IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1245-d744662.html
   My bibliography  Save this article

Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review

Author

Listed:
  • Mushtaq T. Al-Asadi

    (Business Development Department, Basra Oil Company, Ministry of Oil, Basra 240, Iraq
    Institute of Thermofluids, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Hussein A. Mohammed

    (WA School of Mines-Minerals, Energy & Chemical Engineering, Curtin University, Perth, WA 6102, Australia)

  • Mark C. T. Wilson

    (Institute of Thermofluids, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK)

Abstract

An effective way to enhance the heat transfer in mini and micro electronic devices is to use different shapes of micro-channels containing vortex generators (VGs). This attracts researchers due to the reduced volume of the electronic micro-chips and increase in the heat generated from the devices. Another way to enhance the heat transfer is using nanofluids, which are considered to have great potential for heat transfer enhancement and are highly suited to application in practical heat transfer processes. Recently, several important studies have been carried out to understand and explain the causes of the enhancement or control of heat transfer using nanofluids. The main aim upon which the present work is based is to give a comprehensive review on the research progress on the heat transfer and fluid flow characteristics of nanofluids for both single- and two- phase models in different types of micro-channels. Both experimental and numerical studies have been reviewed for traditional and nanofluids in different types and shapes of micro-channels with vortex generators. It was found that the optimization of heat transfer enhancement should consider the pumping power reduction when evaluating the improvement of heat transfer.

Suggested Citation

  • Mushtaq T. Al-Asadi & Hussein A. Mohammed & Mark C. T. Wilson, 2022. "Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review," Energies, MDPI, vol. 15(3), pages 1-34, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1245-:d:744662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    2. Ahmed, H.E. & Mohammed, H.A. & Yusoff, M.Z., 2012. "An overview on heat transfer augmentation using vortex generators and nanofluids: Approaches and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5951-5993.
    3. Haddad, Zoubida & Oztop, Hakan F. & Abu-Nada, Eiyad & Mataoui, Amina, 2012. "A review on natural convective heat transfer of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5363-5378.
    4. Lin, Cherng-Yuan & Wang, Jung-Chang & Chen, Teng-Chieh, 2011. "Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration," Applied Energy, Elsevier, vol. 88(12), pages 4527-4533.
    5. Nagarani, N. & Mayilsamy, K. & Murugesan, A. & Kumar, G. Sathesh, 2014. "Review of utilization of extended surfaces in heat transfer problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 604-613.
    6. Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2012. "Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications," Applied Energy, Elsevier, vol. 97(C), pages 828-833.
    7. Bigdeli, Masoud Bozorg & Fasano, Matteo & Cardellini, Annalisa & Chiavazzo, Eliodoro & Asinari, Pietro, 2016. "A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1615-1633.
    8. Dixit, Tisha & Ghosh, Indranil, 2015. "Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1298-1311.
    9. Mohammed, H.A. & Al-aswadi, A.A. & Shuaib, N.H. & Saidur, R., 2011. "Convective heat transfer and fluid flow study over a step using nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2921-2939, August.
    10. Mohammed, H.A. & Bhaskaran, G. & Shuaib, N.H. & Saidur, R., 2011. "Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1502-1512, April.
    11. Mohammed Adham, Ahmed & Mohd-Ghazali, Normah & Ahmad, Robiah, 2013. "Thermal and hydrodynamic analysis of microchannel heat sinks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 614-622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    2. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    3. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    4. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    5. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
    6. Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2013. "A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids," Applied Energy, Elsevier, vol. 111(C), pages 80-93.
    7. Wei-Tao Wu & Mehrdad Massoudi & Hongbin Yan, 2017. "Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study," Energies, MDPI, vol. 10(4), pages 1-18, April.
    8. Yazid, Muhammad Noor Afiq Witri Muhammad & Sidik, Nor Azwadi Che & Yahya, Wira Jazair, 2017. "Heat and mass transfer characteristics of carbon nanotube nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 914-941.
    9. Wu, Zan & Sundén, Bengt, 2014. "On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 11-27.
    10. Ebrahimi, Amin & Rikhtegar, Farhad & Sabaghan, Amin & Roohi, Ehsan, 2016. "Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids," Energy, Elsevier, vol. 101(C), pages 190-201.
    11. Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
    12. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    13. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    14. Yiamsawas, Thaklaew & Mahian, Omid & Dalkilic, Ahmet Selim & Kaewnai, Suthep & Wongwises, Somchai, 2013. "Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications," Applied Energy, Elsevier, vol. 111(C), pages 40-45.
    15. Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
    16. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    17. Mazlan, M. & Najafi, G. & Hoseini, S.S. & Mamat, R. & Alenzi, Raslan A. & Mofijur, M. & Yusaf, T., 2021. "Thermal efficiency analysis of a nanofluid-based micro combined heat and power system using CNG and biogas," Energy, Elsevier, vol. 231(C).
    18. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    19. Suganthi, K.S. & Leela Vinodhan, V. & Rajan, K.S., 2014. "Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants," Applied Energy, Elsevier, vol. 135(C), pages 548-559.
    20. Dixit, Tisha & Ghosh, Indranil, 2015. "Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1298-1311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1245-:d:744662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.