IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v97y2012icp828-833.html
   My bibliography  Save this article

Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications

Author

Listed:
  • Colangelo, Gianpiero
  • Favale, Ernani
  • de Risi, Arturo
  • Laforgia, Domenico

Abstract

The work reported in this paper shows the experimental results from a study on diathermic oil based nanofluids. Diathermic oil finds application in renewable energy, cogeneration and cooling systems. For example, it is used in solar thermodynamic or biomass plants, where high efficiency, compact volumes and high energy fluxes are required. Besides diathermic oil is very important in those applications where high temperatures are reached or where the use of water or vapor is not suitable. Therefore an improvement of diathermic oil thermo-physical properties, by using of nanoparticles, can increase the performance of the systems.

Suggested Citation

  • Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2012. "Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications," Applied Energy, Elsevier, vol. 97(C), pages 828-833.
  • Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:828-833
    DOI: 10.1016/j.apenergy.2011.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mo, Songping & Chen, Ying & Jia, Lisi & Luo, Xianglong, 2012. "Investigation on crystallization of TiO2–water nanofluids and deionized water," Applied Energy, Elsevier, vol. 93(C), pages 65-70.
    2. Moya, M. & Bruno, J.C. & Eguia, P. & Torres, E. & Zamora, I. & Coronas, A., 2011. "Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller," Applied Energy, Elsevier, vol. 88(12), pages 4424-4440.
    3. Lin, Cherng-Yuan & Wang, Jung-Chang & Chen, Teng-Chieh, 2011. "Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration," Applied Energy, Elsevier, vol. 88(12), pages 4527-4533.
    4. Kulkarni, Devdatta P. & Das, Debendra K. & Vajjha, Ravikanth S., 2009. "Application of nanofluids in heating buildings and reducing pollution," Applied Energy, Elsevier, vol. 86(12), pages 2566-2573, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2013. "A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids," Applied Energy, Elsevier, vol. 111(C), pages 80-93.
    2. Suganthi, K.S. & Leela Vinodhan, V. & Rajan, K.S., 2014. "Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants," Applied Energy, Elsevier, vol. 135(C), pages 548-559.
    3. Yiamsawas, Thaklaew & Mahian, Omid & Dalkilic, Ahmet Selim & Kaewnai, Suthep & Wongwises, Somchai, 2013. "Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications," Applied Energy, Elsevier, vol. 111(C), pages 40-45.
    4. Aladag, Bahadir & Halelfadl, Salma & Doner, Nimeti & Maré, Thierry & Duret, Steven & Estellé, Patrice, 2012. "Experimental investigations of the viscosity of nanofluids at low temperatures," Applied Energy, Elsevier, vol. 97(C), pages 876-880.
    5. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    6. Liu, Jian & Wang, Fuxian & Zhang, Long & Fang, Xiaoming & Zhang, Zhengguo, 2014. "Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications," Renewable Energy, Elsevier, vol. 63(C), pages 519-523.
    7. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    8. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    9. Rajendra S. Rajpoot & Shanmugam. Dhinakaran & Md. Mahbub Alam, 2021. "Numerical Analysis of Mixed Convective Heat Transfer from a Square Cylinder Utilizing Nanofluids with Multi-Phase Modelling Approach," Energies, MDPI, vol. 14(17), pages 1-26, September.
    10. M. M. Sarafraz & Alireza Dareh Baghi & Mohammad Reza Safaei & Arturo S. Leon & R. Ghomashchi & Marjan Goodarzi & Cheng-Xian Lin, 2019. "Assessment of Iron Oxide (III)–Therminol 66 Nanofluid as a Novel Working Fluid in a Convective Radiator Heating System for Buildings," Energies, MDPI, vol. 12(22), pages 1-13, November.
    11. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    12. Fan, Li-Wu & Yao, Xiao-Li & Wang, Xiao & Wu, Yu-Yue & Liu, Xue-Ling & Xu, Xu & Yu, Zi-Tao, 2015. "Non-isothermal crystallization of aqueous nanofluids with high aspect-ratio carbon nano-additives for cold thermal energy storage," Applied Energy, Elsevier, vol. 138(C), pages 193-201.
    13. Fong, K.F. & Lee, C.K., 2015. "Performance analysis of internal-combustion-engine primed trigeneration systems for use in high-rise office buildings in Hong Kong," Applied Energy, Elsevier, vol. 160(C), pages 793-801.
    14. Pang, Kang Ying & Liew, Peng Yen & Woon, Kok Sin & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2023. "Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands," Energy, Elsevier, vol. 262(PA).
    15. Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
    16. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    17. Wang, Zhen & Wang, Yiping & Vivar, Marta & Fuentes, Manuel & Zhu, Li & Qin, Lianwei, 2014. "Photovoltaic and photocatalytic performance study of SOLWAT system for the degradation of Methylene Blue, Acid Red 26 and 4-Chlorophenol," Applied Energy, Elsevier, vol. 120(C), pages 1-10.
    18. Jia, Lisi & Peng, Lan & Chen, Ying & Mo, Songping & Li, Xing, 2014. "Improving the supercooling degree of titanium dioxide nanofluids with sodium dodecylsulfate," Applied Energy, Elsevier, vol. 124(C), pages 248-255.
    19. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.
    20. Jayasekara, Saliya & Halgamuge, Saman K., 2014. "A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems," Applied Energy, Elsevier, vol. 127(C), pages 239-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:97:y:2012:i:c:p:828-833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.