IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9373-d1000069.html
   My bibliography  Save this article

The Direct Effect of Enriching the Gaseous Combustible with 23% Hydrogen in Condensing Boilers’ Operation

Author

Listed:
  • Răzvan Calotă

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 020396 Bucharest, Romania)

  • Nicolae N. Antonescu

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 020396 Bucharest, Romania)

  • Dan-Paul Stănescu

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 020396 Bucharest, Romania)

  • Ilinca Năstase

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 020396 Bucharest, Romania)

Abstract

Following the international trend of using hydrogen as combustible in many industry branches, this paper investigates the impact of mixing methane gas with 23% hydrogen (G222) on condensing boilers’ operation. After modeling and testing several boilers with heat exchange surface different designs, the authors gathered enough information to introduce a new concept, namely High-Performance Condensing Boiler (HPCB). All the boilers that fit into this approach have the same operational parameters at nominal heat load, including the CO 2 concentrations in flue gases. After testing a flattened pipes condensing boiler, a CO 2 emission reduction coefficient of 1.1 was determined when converting from methane gas to G222 as combustible. Thus, by inserting into the national grid a G222 mixture, an important reduction in greenhouse gases can be achieved. For a 28 kW condensing boiler, the annual reduction in CO 2 emissions averages 1.26 tons, value which was experimentally obtained and is consistent with the theoretical evaluation.

Suggested Citation

  • Răzvan Calotă & Nicolae N. Antonescu & Dan-Paul Stănescu & Ilinca Năstase, 2022. "The Direct Effect of Enriching the Gaseous Combustible with 23% Hydrogen in Condensing Boilers’ Operation," Energies, MDPI, vol. 15(24), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9373-:d:1000069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lo Basso, Gianluigi & Nastasi, Benedetto & Astiaso Garcia, Davide & Cumo, Fabrizio, 2017. "How to handle the Hydrogen enriched Natural Gas blends in combustion efficiency measurement procedure of conventional and condensing boilers," Energy, Elsevier, vol. 123(C), pages 615-636.
    2. Lamioni, Rachele & Bronzoni, Cristiana & Folli, Marco & Tognotti, Leonardo & Galletti, Chiara, 2022. "Feeding H2-admixtures to domestic condensing boilers: Numerical simulations of combustion and pollutant formation in multi-hole burners," Applied Energy, Elsevier, vol. 309(C).
    3. Yue Xin & Ke Wang & Yindi Zhang & Fanjin Zeng & Xiang He & Shadrack Adjei Takyi & Paitoon Tontiwachwuthikul, 2021. "Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers," Energies, MDPI, vol. 14(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Drost & Sven Eckart & Chunkan Yu & Robert Schießl & Hartmut Krause & Ulrich Maas, 2023. "Numerical and Experimental Investigations of CH 4 /H 2 Mixtures: Ignition Delay Times, Laminar Burning Velocity and Extinction Limits," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2021. "Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach," Energy, Elsevier, vol. 236(C).
    3. de Santoli, Livio & Paiolo, Romano & Lo Basso, Gianluigi, 2020. "Energy-environmental experimental campaign on a commercial CHP fueled with H2NG blends and oxygen enriched air hailing from on-site electrolysis," Energy, Elsevier, vol. 195(C).
    4. Vladislav Kovalnogov & Ruslan Fedorov & Vladimir Klyachkin & Dmitry Generalov & Yulia Kuvayskova & Sergey Busygin, 2022. "Applying the Random Forest Method to Improve Burner Efficiency," Mathematics, MDPI, vol. 10(12), pages 1-24, June.
    5. Barbarelli, Silvio & Florio, Gaetano & Lo Zupone, Giacomo & Scornaienchi, Nino Michele, 2018. "First techno-economic evaluation of array configuration of self-balancing tidal kinetic turbines," Renewable Energy, Elsevier, vol. 129(PA), pages 183-200.
    6. Bo Zhu & Bichen Shang & Xiao Guo & Chao Wu & Xiaoqiang Chen & Lingling Zhao, 2022. "Study on Combustion Characteristics and NOx Formation in 600 MW Coal-Fired Boiler Based on Numerical Simulation," Energies, MDPI, vol. 16(1), pages 1-30, December.
    7. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    8. Barbarelli, S. & Florio, G. & Amelio, M. & Scornaienchi, N.M., 2018. "Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents," Applied Energy, Elsevier, vol. 224(C), pages 717-730.
    9. O'Shea, R. & Wall, D.M. & McDonagh, S. & Murphy, J.D., 2017. "The potential of power to gas to provide green gas utilising existing CO2 sources from industries, distilleries and wastewater treatment facilities," Renewable Energy, Elsevier, vol. 114(PB), pages 1090-1100.
    10. Satyavada, Harish & Baldi, Simone, 2018. "Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and estimation," Energy, Elsevier, vol. 142(C), pages 121-129.
    11. Zareei, Javad & Rohani, Abbas & Mazari, Farhad & Mikkhailova, Maria Vladimirovna, 2021. "Numerical investigation of the effect of two-step injection (direct and port injection) of hydrogen blending and natural gas on engine performance and exhaust gas emissions," Energy, Elsevier, vol. 231(C).
    12. Yılmaz, Semih & Kumlutaş, Dilek & Yücekaya, Utku Alp & Cumbul, Ahmet Yakup, 2021. "Prediction of the equilibrium compositions in the combustion products of a domestic boiler," Energy, Elsevier, vol. 233(C).
    13. de Santoli, Livio & Lo Basso, Gianluigi & Barati, Shahrokh & D’Ambra, Stefano & Fasolilli, Cristina, 2020. "Seasonal energy and environmental characterization of a micro gas turbine fueled with H2NG blends," Energy, Elsevier, vol. 193(C).
    14. Umberto Di Matteo & Benedetto Nastasi & Angelo Albo & Davide Astiaso Garcia, 2017. "Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale," Energies, MDPI, vol. 10(2), pages 1-13, February.
    15. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    16. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    17. Robert Wojtowicz & Jacek Jaworski, 2021. "Operation Analysis of Selected Domestic Appliances Supplied with Mixture of Nitrogen-Rich Natural Gas with Hydrogen," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    18. Frank, Elimar & Gorre, Jachin & Ruoss, Fabian & Friedl, Markus J., 2018. "Calculation and analysis of efficiencies and annual performances of Power-to-Gas systems," Applied Energy, Elsevier, vol. 218(C), pages 217-231.
    19. Christina Ingo & Jessica Tuuf & Margareta Björklund-Sänkiaho, 2022. "Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements," Energies, MDPI, vol. 15(21), pages 1-13, October.
    20. Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9373-:d:1000069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.