IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9273-d996122.html
   My bibliography  Save this article

FBG Sensing Technology for an Enhanced Microgrid Performance

Author

Listed:
  • Yasser Elsayed

    (Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe St. North, Oshawa, ON L1G 0C5, Canada)

  • Hossam A. Gabbar

    (Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe St. North, Oshawa, ON L1G 0C5, Canada)

Abstract

Energy provided by microgrids should be considered, especially because their purpose is to supply loads from the available power source of the combined sources of energy, including the grid, optimally and efficiently to satisfy the load demand securely and economically. Sensing the accuracy of the different physical parameters of the combined power sources and energy storage plays a crucial part in the efficiency and resilience of microgrids. The present microgrids mostly use conventional sensors, which are greatly impacted by ambient conditions such as high-voltage (HV) and electromagnetic interference (EMI). So, this paper presents an enhanced microgrid based on replacing the conventional sensors with fiber Bragg grating (FBG) sensors renowned for their immunity to EMI and HV, in addition to the virtue of distributing sensing capability. The enhanced microgrid based on FBG sensing was tested experimentally at different potential points predefined on the microgrid and validated with a microgrid simulation model. Real-time measurements of FBG and conventional sensors were recorded at the potential points and applied to the Simulink model to compare the performance for both cases. The unit and integration tests showed an obvious improvement in the accuracy and resiliency of the microgrid by using FBG sensors.

Suggested Citation

  • Yasser Elsayed & Hossam A. Gabbar, 2022. "FBG Sensing Technology for an Enhanced Microgrid Performance," Energies, MDPI, vol. 15(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9273-:d:996122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2017. "Enhancing the tracking techniques for the global maximum power point under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1173-1183.
    2. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2016. "Enhancing the design of battery charging controllers for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 646-655.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    2. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    3. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    4. Luis Fernando Grisales-Noreña & Carlos Andrés Ramos-Paja & Daniel Gonzalez-Montoya & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2020. "Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    5. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    6. Tao, Laifa & Ma, Jian & Cheng, Yujie & Noktehdan, Azadeh & Chong, Jin & Lu, Chen, 2017. "A review of stochastic battery models and health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 716-732.
    7. Marwen Bjaoui & Brahim Khiari & Ridha Benadli & Mouad Memni & Anis Sellami, 2019. "Practical Implementation of the Backstepping Sliding Mode Controller MPPT for a PV-Storage Application," Energies, MDPI, vol. 12(18), pages 1-22, September.
    8. Teo, J.C. & Tan, Rodney H.G. & Mok, V.H. & Ramachandaramurthy, Vigna K. & Tan, ChiaKwang, 2020. "Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 191(C).
    9. Yin, Wanjun & Ji, Jianbo & Qin, Xuan, 2023. "Study on optimal configuration of EV charging stations based on second-order cone," Energy, Elsevier, vol. 284(C).
    10. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    11. Edison Banguero & Antonio Correcher & Ángel Pérez-Navarro & Francisco Morant & Andrés Aristizabal, 2018. "A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems," Energies, MDPI, vol. 11(4), pages 1-15, April.
    12. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    13. Carmona, Mauricio & Palacio Bastos, Alberto & García, José Doria, 2021. "Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 172(C), pages 680-696.
    14. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2017. "Enhancing the tracking techniques for the global maximum power point under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1173-1183.
    16. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    17. Julio López Seguel & Seleme I. Seleme, 2021. "Robust Digital Control Strategy Based on Fuzzy Logic for a Solar Charger of VRLA Batteries," Energies, MDPI, vol. 14(4), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9273-:d:996122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.