IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9234-d994769.html
   My bibliography  Save this article

A Retrofit Strategy for Real-Time Monitoring of Building Electrical Circuits Based on the SmartLVGrid Metamodel

Author

Listed:
  • Rubens A. Fernandes

    (Department of Electricity, Federal University of Amazonas, Manaus 69067-005, Brazil
    Embedded Systems Laboratory, State University of Amazonas, Manaus 69050-020, Brazil
    Programa de Pós-Graduação em Engenharia Elétrica—PPGEE, Federal University of Amazonas, Manaus 69067-005, Brazil
    Programa de Pós-Graduação em Engenharia Elétrica—PPGEE, Federal University of Para, Belém 66075-110, Brazil)

  • Raimundo C. S. Gomes

    (Embedded Systems Laboratory, State University of Amazonas, Manaus 69050-020, Brazil
    Programa de Pós-Graduação em Engenharia Elétrica—PPGEE, Federal University of Para, Belém 66075-110, Brazil)

  • Ozenir Dias

    (Department of Electricity, Federal University of Amazonas, Manaus 69067-005, Brazil
    Programa de Pós-Graduação em Engenharia Elétrica—PPGEE, Federal University of Amazonas, Manaus 69067-005, Brazil)

  • Celso Carvalho

    (Programa de Pós-Graduação em Engenharia Elétrica—PPGEE, Federal University of Amazonas, Manaus 69067-005, Brazil
    Departamento de Eletrônica e Computação—DTEC, Federal University of Amazonas, Manaus 69067-005, Brazil
    Centro de P&D em Tecnologia Eletrônica e da Informação—CETELI, Federal University of Amazonas, Manaus 69067-005, Brazil)

  • Israel G. Torné

    (Embedded Systems Laboratory, State University of Amazonas, Manaus 69050-020, Brazil)

  • Jozias P. Oliveira

    (Embedded Systems Laboratory, State University of Amazonas, Manaus 69050-020, Brazil)

  • Carlos T. C. Júnior

    (Programa de Pós-Graduação em Engenharia Elétrica—PPGEE, Federal University of Para, Belém 66075-110, Brazil)

Abstract

The Internet of things (IoT) paradigm promotes the emergence of solutions to enable energy-management strategies. However, these solutions may favor the disposal or replacement of outdated but still necessary systems. Thus, a proposal that advocates the retrofit of pre-existing systems would be an alternative to implement energy monitoring. In this sense, this work presents a strategy for monitoring electrical parameters in real time by using IoT solutions, cloud-resident applications, and retrofitting of legacy building electrical systems. In this implementation, we adapted the SmartLVGrid metamodel to systematize the insertion of remote monitoring resources in low-voltage circuits. For this, we developed embedded platforms for monitoring the circuits of a building electrical panel and application for visualization and data storage in the cloud. With this, remote monitoring of the consumer unit was carried out in relation to energy demand, power factor, and events of variations of electrical parameters in the circuits of the legacy distribution board. We also carried out a case study with the proposed system, identifying events of excess demand in the consumer unit, mitigating the individual contribution of the installation circuits in this process. Therefore, our proposal presents an alternative to enable energy management and maximum use of existing resources.

Suggested Citation

  • Rubens A. Fernandes & Raimundo C. S. Gomes & Ozenir Dias & Celso Carvalho & Israel G. Torné & Jozias P. Oliveira & Carlos T. C. Júnior, 2022. "A Retrofit Strategy for Real-Time Monitoring of Building Electrical Circuits Based on the SmartLVGrid Metamodel," Energies, MDPI, vol. 15(23), pages 1-31, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9234-:d:994769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Claudio S. Gomes & Carlos Costa & Jose Silva & Jose Sicchar, 2019. "SmartLVGrid Platform—Convergence of Legacy Low-Voltage Circuits toward the Smart Grid Paradigm," Energies, MDPI, vol. 12(13), pages 1-23, July.
    2. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    3. Rubens A. Fernandes & Raimundo C. S. Gomes & Ozenir Dias & Celso Carvalho, 2022. "A Novel Strategy for Smart Building Convergence Based on the SmartLVGrid Metamodel," Energies, MDPI, vol. 15(3), pages 1-26, January.
    4. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rubens A. Fernandes & Raimundo C. S. Gomes & Carlos T. Costa & Celso Carvalho & Neilson L. Vilaça & Lennon B. F. Nascimento & Fabricio R. Seppe & Israel G. Torné & Heitor L. N. da Silva, 2023. "A Demand Forecasting Strategy Based on a Retrofit Architecture for Remote Monitoring of Legacy Building Circuits," Sustainability, MDPI, vol. 15(14), pages 1-37, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubens A. Fernandes & Raimundo C. S. Gomes & Carlos T. Costa & Celso Carvalho & Neilson L. Vilaça & Lennon B. F. Nascimento & Fabricio R. Seppe & Israel G. Torné & Heitor L. N. da Silva, 2023. "A Demand Forecasting Strategy Based on a Retrofit Architecture for Remote Monitoring of Legacy Building Circuits," Sustainability, MDPI, vol. 15(14), pages 1-37, July.
    2. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    3. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    4. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    5. Abdul Hasib Siddique & Mehedi Hasan & Sharnali Islam & Khalid Rashid, 2021. "Prospective Smart Distribution Substation in Bangladesh: Modeling and Analysis," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    6. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    7. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.
    8. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
    9. Marques, Vítor & Costa, Paulo Moisés & Bento, Nuno, 2022. "Greater than the sum: On regulating innovation in electricity distribution networks with externalities," Utilities Policy, Elsevier, vol. 79(C).
    10. Joaquim Amândio Azevedo & Filipe Edgar Santos, 2021. "A More Efficient Technique to Power Home Monitoring Systems Using Controlled Battery Charging," Energies, MDPI, vol. 14(13), pages 1-16, June.
    11. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    12. Reda El Makroum & Ahmed Khallaayoun & Rachid Lghoul & Kedar Mehta & Wilfried Zörner, 2023. "Home Energy Management System Based on Genetic Algorithm for Load Scheduling: A Case Study Based on Real Life Consumption Data," Energies, MDPI, vol. 16(6), pages 1-18, March.
    13. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    14. Antonio E. Saldaña-González & Andreas Sumper & Mònica Aragüés-Peñalba & Miha Smolnikar, 2020. "Advanced Distribution Measurement Technologies and Data Applications for Smart Grids: A Review," Energies, MDPI, vol. 13(14), pages 1-34, July.
    15. Olga Pilipczuk, 2020. "Sustainable Smart Cities and Energy Management: The Labor Market Perspective," Energies, MDPI, vol. 13(22), pages 1-24, November.
    16. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    17. Zhihui He & Lei Ning & Baihui Jiang & Jiajia Li & Xin Wang, 2023. "Vehicle Intersections Prediction Based on Markov Model with Variable Weight Optimization," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    18. Helder Pereira & Bruno Ribeiro & Luis Gomes & Zita Vale, 2022. "Smart Grid Ecosystem Modeling Using a Novel Framework for Heterogenous Agent Communities," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    19. Shruti & Shalli Rani & Aman Singh & Reem Alkanhel & Dina S. M. Hassan, 2023. "SDAFA: Secure Data Aggregation in Fog-Assisted Smart Grid Environment," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    20. Ángeles Verdejo-Espinosa & Macarena Espinilla-Estévez & Francisco Mata Mata, 2020. "Smart Grids and Their Role in Transforming Human Activities—A Systematic Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9234-:d:994769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.