IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8731-d978529.html
   My bibliography  Save this article

Theoretical and Experimental Studies of a PDMS Pneumatic Microactuator for Microfluidic Systems

Author

Listed:
  • Xuling Liu

    (School of Mechanical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Huafeng Song

    (Henan Xixi Highway Construction Co., Ltd., Nanyang 474450, China)

  • Wensi Zuo

    (School of Mechanical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Guoyong Ye

    (School of Mechanical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Shaobo Jin

    (School of Mechanical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Liangwen Wang

    (School of Mechanical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Songjing Li

    (Department of Fluid Control and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

The compact, simple, and fast-reaction pneumatic microactuator is significant for the integration and high efficiency of pneumatic systems. In this work, the structure, working principle, and multiphysical model of an on-chip pneumatic microactuator are presented. The on-chip pneumatic microactuator is mainly composed of two parts: a polydimethylsiloxane (PDMS) thin membrane and an actuated chamber. The air pressure in the actuated chamber drives the thin elastic membrane to deformation. Dynamic response mathematical models of the actuated chamber for charging and exhaust with variable volume are established, and the deformation characteristics of the polydimethylsiloxane (PDMS) actuated membrane, the capacity of the actuated chamber, and the valve opening of the on-off membrane microvalve are simulated and analyzed to explore the response characteristics of the proposed pneumatic microactuator. Samples valving analysis of the on-chip membrane microvalve and mixing performance of the micromixer integrated with the pneumatic microactuator are tested to evaluate the driving capability of the pneumatic microactuator, and the results show that the response performance of the actuated time fully satisfies the needs of a pneumatic microfluidic chip for most applications.

Suggested Citation

  • Xuling Liu & Huafeng Song & Wensi Zuo & Guoyong Ye & Shaobo Jin & Liangwen Wang & Songjing Li, 2022. "Theoretical and Experimental Studies of a PDMS Pneumatic Microactuator for Microfluidic Systems," Energies, MDPI, vol. 15(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8731-:d:978529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric K. Sackmann & Anna L. Fulton & David J. Beebe, 2014. "The present and future role of microfluidics in biomedical research," Nature, Nature, vol. 507(7491), pages 181-189, March.
    2. George M. Whitesides, 2006. "The origins and the future of microfluidics," Nature, Nature, vol. 442(7101), pages 368-373, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex J L Morgan & Lorena Hidalgo San Jose & William D Jamieson & Jennifer M Wymant & Bing Song & Phil Stephens & David A Barrow & Oliver K Castell, 2016. "Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    2. Saroj Kumar & Lasse ten Siethoff & Malin Persson & Mercy Lard & Geertruy te Kronnie & Heiner Linke & Alf Månsson, 2012. "Antibodies Covalently Immobilized on Actin Filaments for Fast Myosin Driven Analyte Transport," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-16, October.
    3. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    4. Saha, Sujit & Kundu, Balaram, 2023. "Multi-objective optimization of electrokinetic energy conversion efficiency and entropy generation for streaming potential driven electromagnetohydrodynamic flow of couple stress Casson fluid in micro," Energy, Elsevier, vol. 284(C).
    5. Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Yunhan Kim & Taekyum Kim & Byeng D. Youn & Sung-Hoon Ahn, 2022. "Machining quality monitoring (MQM) in laser-assisted micro-milling of glass using cutting force signals: an image-based deep transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1813-1828, August.
    7. Rarotra, Saptak & Shahid, Shaik & De, Mahuya & Mandal, Tapas Kumar & Bandyopadhyay, Dipankar, 2021. "Graphite/RGO coated paper μ-electrolyzers for production and separation of hydrogen and oxygen," Energy, Elsevier, vol. 228(C).
    8. Cairone, Fabiana & Mirabella, Daniela & Cabrales, Pedro J. & Intaglietta, Marcos & Bucolo, Maide, 2018. "Quantitative analysis of spatial irregularities in RBCs flows," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 349-355.
    9. Yang, Xu & Liang, Yingjie & Chen, Wen, 2019. "A fractal roughness model for the transport of fractional non-Newtonian fluid in microtubes," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 236-241.
    10. Richard H. Steckel, 2008. "Biological Measures of the Standard of Living," Journal of Economic Perspectives, American Economic Association, vol. 22(1), pages 129-152, Winter.
    11. Yuqing Chang & Yuqian Wang & Wen Li & Zewen Wei & Shichuan Tang & Rui Chen, 2023. "Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review," IJERPH, MDPI, vol. 20(8), pages 1-30, April.
    12. Jacobo Ayensa-Jiménez & Marina Pérez-Aliacar & Teodora Randelovic & José Antonio Sanz-Herrera & Mohamed H. Doweidar & Manuel Doblaré, 2020. "Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas," Mathematics, MDPI, vol. 9(1), pages 1-22, December.
    13. Banerjee, Rintu & Kumar, S.P. Jeevan & Mehendale, Ninad & Sevda, Surajbhan & Garlapati, Vijay Kumar, 2019. "Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 548-558.
    14. Badriyah Alhalaili & Ileana Nicoleta Popescu & Carmen Otilia Rusanescu & Ruxandra Vidu, 2022. "Microfluidic Devices and Microfluidics-Integrated Electrochemical and Optical (Bio)Sensors for Pollution Analysis: A Review," Sustainability, MDPI, vol. 14(19), pages 1-38, October.
    15. Brian S. Flowers & Ryan L. Hartman, 2012. "Particle Handling Techniques in Microchemical Processes," Challenges, MDPI, vol. 3(2), pages 1-18, August.
    16. Léa Duchesne & Victor Duchesne, 2018. "Sub-Saharan Africa and hepatitis C: challenges and insights regarding the implementation of innovative diagnostics [Afrique sub-saharienne et hépatite C : défis et perspectives de la mise en œuvre ," Post-Print hal-02017149, HAL.
    17. Hovav, Anat & Hemmert, Martin & Kim, Yoo Jung, 2011. "Determinants of Internet standards adoption: The case of South Korea," Research Policy, Elsevier, vol. 40(2), pages 253-262, March.
    18. Zain Hayat & Abdel El Abed, 2019. "Microfluidic Based Fast and Dynamic Droplet Interface Bilayer System (DIBS)," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 21(1), pages 15611-15619, September.
    19. Mumuni Amadu & Adango Miadonye, 2024. "Interrelationship of Electric Double Layer Theory and Microfluidic Microbial Fuel Cells: A Review of Theoretical Foundations and Implications for Performance," Energies, MDPI, vol. 17(6), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8731-:d:978529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.