IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223026828.html
   My bibliography  Save this article

Multi-objective optimization of electrokinetic energy conversion efficiency and entropy generation for streaming potential driven electromagnetohydrodynamic flow of couple stress Casson fluid in microchannels with slip-dependent zeta potentials

Author

Listed:
  • Saha, Sujit
  • Kundu, Balaram

Abstract

The present study develops a new mathematical approach to the pressure-mediated streaming potential flow of couple-stress Casson fluids with the influence of slip-dependent zeta potential between two parallel plates in a microchannel. The lateral electric and transverse magnetic fields are externally applied to control the fluid flow. A multi-objective optimization technique was implemented by utilizing the non-dominated sorting genetic algorithm (NSGA-II) by varying different constraints to maximize the electrokinetic energy conversion efficiency and minimize the irreversibility of the system. The present results show that the couple stress and Casson parameters influence the development of streaming potential, electrokinetic energy conversion (EKEC) efficiency, temperature, Nusselt number, and Bejan number for asymmetric velocity slip and temperature jump circumstances. The viscous dissipation, Joule heating, and thermal radiation parameters significantly affect the heat transfer. According to the present results, the EKEC efficiency increases with a slip-dependent zeta potential of couple stress Casson fluid, couple stress fluid, Casson fluid, and Newtonian fluid by 45.92 %, 47.10 %, 42.81 %, and 37.68 %, respectively, compared to that for the slip-independent zeta potential. At the centre of the microchannel for the jump boundary conditions, temperature increases by 2.95 % compared to no jump boundary conditions.

Suggested Citation

  • Saha, Sujit & Kundu, Balaram, 2023. "Multi-objective optimization of electrokinetic energy conversion efficiency and entropy generation for streaming potential driven electromagnetohydrodynamic flow of couple stress Casson fluid in micro," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026828
    DOI: 10.1016/j.energy.2023.129288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223026828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yongbo & Jian, Yongjun & Yang, Chunhong, 2020. "Electrochemomechanical energy conversion efficiency in curved rectangular nanochannels," Energy, Elsevier, vol. 198(C).
    2. Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
    3. Escandón, J. & Bautista, O. & Méndez, F., 2013. "Entropy generation in purely electroosmotic flows of non-Newtonian fluids in a microchannel," Energy, Elsevier, vol. 55(C), pages 486-496.
    4. Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.
    5. George M. Whitesides, 2006. "The origins and the future of microfluidics," Nature, Nature, vol. 442(7101), pages 368-373, July.
    6. Xie, Zhiyong & Jian, Yongjun, 2020. "Electrokinetic energy conversion of nanofluids in MHD-based microtube," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    2. Xie, Zhiyong & Jian, Yongjun, 2022. "Electrokinetic energy conversion of power-law fluids in a slit nanochannel beyond Debye-Hückel linearization," Energy, Elsevier, vol. 252(C).
    3. Chee, Yi Shen & Ting, Tiew Wei & Hung, Yew Mun, 2015. "Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries," Energy, Elsevier, vol. 89(C), pages 382-401.
    4. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    5. Yuqing Chang & Yuqian Wang & Wen Li & Zewen Wei & Shichuan Tang & Rui Chen, 2023. "Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review," IJERPH, MDPI, vol. 20(8), pages 1-30, April.
    6. Matin, Meisam Habibi & Khan, Waqar Ahmed, 2013. "Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel," Energy, Elsevier, vol. 56(C), pages 207-217.
    7. Xuling Liu & Huafeng Song & Wensi Zuo & Guoyong Ye & Shaobo Jin & Liangwen Wang & Songjing Li, 2022. "Theoretical and Experimental Studies of a PDMS Pneumatic Microactuator for Microfluidic Systems," Energies, MDPI, vol. 15(22), pages 1-19, November.
    8. Xie, Zhiyong & Jian, Yongjun, 2020. "Electrokinetic energy conversion of nanofluids in MHD-based microtube," Energy, Elsevier, vol. 212(C).
    9. Saroj Kumar & Lasse ten Siethoff & Malin Persson & Mercy Lard & Geertruy te Kronnie & Heiner Linke & Alf Månsson, 2012. "Antibodies Covalently Immobilized on Actin Filaments for Fast Myosin Driven Analyte Transport," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-16, October.
    10. Banerjee, Rintu & Kumar, S.P. Jeevan & Mehendale, Ninad & Sevda, Surajbhan & Garlapati, Vijay Kumar, 2019. "Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 548-558.
    11. Liu, Yongbo & Jian, Yongjun & Yang, Chunhong, 2020. "Electrochemomechanical energy conversion efficiency in curved rectangular nanochannels," Energy, Elsevier, vol. 198(C).
    12. Badriyah Alhalaili & Ileana Nicoleta Popescu & Carmen Otilia Rusanescu & Ruxandra Vidu, 2022. "Microfluidic Devices and Microfluidics-Integrated Electrochemical and Optical (Bio)Sensors for Pollution Analysis: A Review," Sustainability, MDPI, vol. 14(19), pages 1-38, October.
    13. Arjmandi, H.R. & Amani, E., 2015. "A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber," Energy, Elsevier, vol. 81(C), pages 706-718.
    14. Brian S. Flowers & Ryan L. Hartman, 2012. "Particle Handling Techniques in Microchemical Processes," Challenges, MDPI, vol. 3(2), pages 1-18, August.
    15. Khan, Mair & Shahid, Amna & Salahuddin, T. & Malik, M.Y. & Hussain, Arif, 2020. "Analysis of two dimensional Carreau fluid flow due to normal surface condition: A generalized Fourier’s and Fick’s laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Torabi, Mohsen & Zhang, Kaili, 2015. "Temperature distribution, local and total entropy generation analyses in MHD porous channels with thick walls," Energy, Elsevier, vol. 87(C), pages 540-554.
    17. Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.
    18. Torabi, Mohsen & Zhang, Kaili, 2014. "Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditi," Energy, Elsevier, vol. 65(C), pages 387-397.
    19. Zhang, Kaiyu & Wang, Yibai & Tang, Haibin & Li, Yong & Wang, Baojun & York, Thomas M. & Yang, Lijun, 2020. "Two-dimensional analytical investigation into energy conversion and efficiency maximization of magnetohydrodynamic swirling flow actuators," Energy, Elsevier, vol. 209(C).
    20. Escandón, J. & Bautista, O. & Méndez, F., 2013. "Entropy generation in purely electroosmotic flows of non-Newtonian fluids in a microchannel," Energy, Elsevier, vol. 55(C), pages 486-496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.