IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8729-d978528.html
   My bibliography  Save this article

Resiliency-Sensitive Decision Making Mechanism for a Residential Community Enhanced with Bi-Directional Operation of Fuel Cell Electric Vehicles

Author

Listed:
  • Fatma Gülşen Erdinç

    (Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Istanbul Gelisim University, Istanbul 34310, Turkey)

  • Alper Çiçek

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, Trakya University, Edirne 22030, Turkey)

  • Ozan Erdinç

    (Department of Electrical Engineering, Faculty of Electrical and Electronics, Yildiz Technical University, Istanbul 34220, Turkey)

Abstract

The trend regarding providing more distributed solutions compared to a fully centralized operation has increased the research activities conducted on the improvement of active regional communities in the power system operation in the last decades. In this study, an energy management-oriented decision-making mechanism for residential end-users based local community is proposed in a mixed-integer linear programming context. The proposed concept normally includes inflexible resiliency-sensitive load–demand activated as flexible during abnormal operating conditions, fuel cell electric vehicles (FCEVs) fed via the hydrogen provided by an electrolyzer unit connected to the residential community and capable of acting in vehicle-to-grid (V2G) mode, common energy storage and photovoltaic (PV) based distributed generation units and dispersed PV based generating options at the end-user premises. The combination of the hydrogen–electricity chain with the V2G capability of FCEVs and the resiliency-sensitive loads together with common ESS and generation units provides the novelty the study brings to the existing literature. The concept was tested under different case studies also with different objective functions.

Suggested Citation

  • Fatma Gülşen Erdinç & Alper Çiçek & Ozan Erdinç, 2022. "Resiliency-Sensitive Decision Making Mechanism for a Residential Community Enhanced with Bi-Directional Operation of Fuel Cell Electric Vehicles," Energies, MDPI, vol. 15(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8729-:d:978528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    2. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Akter, M.N. & Mahmud, M.A. & Haque, M.E. & Oo, Amanullah M.T., 2020. "An optimal distributed energy management scheme for solving transactive energy sharing problems in residential microgrids," Applied Energy, Elsevier, vol. 270(C).
    4. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinç, Fatma Gülşen, 2023. "Rolling horizon optimization based real-time energy management of a residential neighborhood considering PV and ESS usage fairness," Applied Energy, Elsevier, vol. 344(C).
    2. Faraji, Hossien & Nosratabadi, Seyyed Mostafa & Hemmati, Reza, 2022. "AC unbalanced and DC load management in multi-bus residential microgrid integrated with hybrid capacity resources," Energy, Elsevier, vol. 252(C).
    3. Syed Taha Taqvi & Ali Almansoori & Azadeh Maroufmashat & Ali Elkamel, 2022. "Utilizing Rooftop Renewable Energy Potential for Electric Vehicle Charging Infrastructure Using Multi-Energy Hub Approach," Energies, MDPI, vol. 15(24), pages 1-21, December.
    4. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    5. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    6. Lo Piano, S. & Smith, S.T., 2022. "Energy demand and its temporal flexibility: Approaches, criticalities and ways forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Mohammadpour Shotorbani, Amin & Zeinal-Kheiri, Sevda & Chhipi-Shrestha, Gyan & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Enhanced real-time scheduling algorithm for energy management in a renewable-integrated microgrid," Applied Energy, Elsevier, vol. 304(C).
    8. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    9. Akansha Jain & Masoud Karimi-Ghartemani, 2022. "Mitigating Adverse Impacts of Increased Electric Vehicle Charging on Distribution Transformers," Energies, MDPI, vol. 15(23), pages 1-26, November.
    10. Nam Hoai Nguyen & Quynh T. Tran & Thao V. Nguyen & Nam Tran & Leon Roose & Saeed Sepasi & Maria Luisa Di Silvestre, 2023. "A Method for Assessing the Feasibility of Integrating Planned Unidirectional EV Chargers into the Distribution Grid: A Case Study in Danang, Vietnam," Energies, MDPI, vol. 16(9), pages 1-16, April.
    11. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    12. Xu, Bin & Luo, Yuemei & Xu, Renjing & Chen, Jianbao, 2021. "Exploring the driving forces of distributed energy resources in China: Using a semiparametric regression model," Energy, Elsevier, vol. 236(C).
    13. Alexander Micallef & Josep M. Guerrero & Juan C. Vasquez, 2023. "New Horizons for Microgrids: From Rural Electrification to Space Applications," Energies, MDPI, vol. 16(4), pages 1-25, February.
    14. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    15. Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2022. "Non-intrusive power waveform modeling and identification of air conditioning load," Applied Energy, Elsevier, vol. 324(C).
    16. Peter Makeen & Hani A. Ghali & Saim Memon & Fang Duan, 2023. "Insightful Electric Vehicle Utility Grid Aggregator Methodology Based on the G2V and V2G Technologies in Egypt," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    17. Rodrigues, Stefane Dias & Garcia, Vinicius Jacques, 2023. "Transactive energy in microgrid communities: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Zheng, Siqian & Jin, Xin & Huang, Gongsheng & Lai, Alvin CK., 2022. "Coordination of commercial prosumers with distributed demand-side flexibility in energy sharing and management system," Energy, Elsevier, vol. 248(C).
    19. Carolin Monsberger & Bernadette Fina & Hans Auer, 2021. "Profitability of Energy Supply Contracting and Energy Sharing Concepts in a Neighborhood Energy Community: Business Cases for Austria," Energies, MDPI, vol. 14(4), pages 1-27, February.
    20. Cao, Wenzhi & Xiao, Jiang-Wen & Cui, Shi-Chang & Liu, Xiao-Kang, 2022. "An efficient and economical storage and energy sharing model for multiple multi-energy microgrids," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8729-:d:978528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.