IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8518-d972650.html
   My bibliography  Save this article

Optimization of a Solar Water Pumping System in Varying Weather Conditions by a New Hybrid Method Based on Fuzzy Logic and Incremental Conductance

Author

Listed:
  • Abdelilah Hilali

    (Electronics, Communication Systems and Energy Optimization Team, Faculty of Sciences, Moulay Ismail University, Meknes 11201, Morocco)

  • Najib El Ouanjli

    (Laboratory of Mechanical, Computer, Electronics and Telecommunications, Faculty of Sciences and Technology, Hassan First University, Settat 26000, Morocco)

  • Said Mahfoud

    (Industrial Technologies and Services Laboratory, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco)

  • Ameena Saad Al-Sumaiti

    (Advanced Power and Energy Center, Department of Electrical and Computer Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates)

  • Mahmoud A. Mossa

    (Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt)

Abstract

The present work consists of developing a new hybrid FL-INC optimization algorithm for the solar water pumping system (SWPS) through a SEPIC converter whose objective is to improve these performances. This technique is based on the combination of the fuzzy logic of artificial intelligence and the incremental conductance (INC) technique. Indeed, the introduction of fuzzy logic to the INC algorithm allows the extraction of a maximum amount of power and an improvement in the efficiency of the SWPS. The performance of the system through the SEPIC converter is compared with those of the direct coupling to show the interest of the indirect coupling, which requires an adaptation stage driven by an optimal control algorithm. In addition, a comparative analysis between the proposed hybrid algorithm and the conventional optimization techniques, namely, P&O and INC Modified (M-INC), was carried out to confirm improvements related to the SWPS in terms of efficiency, tracking speed, power quality, tracking of the maximum power point under different weather changes, and pumped water flow.

Suggested Citation

  • Abdelilah Hilali & Najib El Ouanjli & Said Mahfoud & Ameena Saad Al-Sumaiti & Mahmoud A. Mossa, 2022. "Optimization of a Solar Water Pumping System in Varying Weather Conditions by a New Hybrid Method Based on Fuzzy Logic and Incremental Conductance," Energies, MDPI, vol. 15(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8518-:d:972650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ameena Saad Al-Sumaiti & Abdollah Kavousi-Fard & Magdy Salama & Motahareh Pourbehzadi & Srikanth Reddy & Muhammad Babar Rasheed, 2020. "Economic Assessment of Distributed Generation Technologies: A Feasibility Study and Comparison with the Literature," Energies, MDPI, vol. 13(11), pages 1-28, June.
    2. Mahmoud A. Mossa & Olfa Gam & Nicola Bianchi, 2022. "Dynamic Performance Enhancement of a Renewable Energy System for Grid Connection and Stand-Alone Operation with Battery Storage," Energies, MDPI, vol. 15(3), pages 1-42, January.
    3. Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
    4. Wang, Chuan & Shi, Weidong & Wang, Xikun & Jiang, Xiaoping & Yang, Yang & Li, Wei & Zhou, Ling, 2017. "Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics," Applied Energy, Elsevier, vol. 187(C), pages 10-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2022. "Development and experimental assessment of a Low Speed Sliding Rotary Vane Pump for heavy duty engine cooling systems," Applied Energy, Elsevier, vol. 327(C).
    2. Jia Li & Xin Wang & Yue Wang & Wancheng Wang & Baibing Chen & Xiaolong Chen, 2020. "Effects of a Combination Impeller on the Flow Field and External Performance of an Aero-Fuel Centrifugal Pump," Energies, MDPI, vol. 13(4), pages 1-16, February.
    3. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    4. Vikash Kumar Saini & Chandra Shekhar Purohit & Rajesh Kumar & Ameena S. Al-Sumaiti, 2023. "Proof of Work Consensus Based Peer to Peer Energy Trading in the Indian Residential Community," Energies, MDPI, vol. 16(3), pages 1-25, January.
    5. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).
    6. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.
    7. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    8. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    9. Lijian Shi & Jun Zhu & Fangping Tang & Chuan Wang, 2020. "Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model," Energies, MDPI, vol. 13(4), pages 1-19, February.
    10. Pejman Peidaee & Akhtar Kalam & Juan Shi, 2020. "Integration of a Heuristic Multi-Agent Protection System into a Distribution Network Interconnected with Distributed Energy Resources," Energies, MDPI, vol. 13(20), pages 1-25, October.
    11. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    12. Shi, Lijian & Yuan, Yao & Jiao, Haifeng & Tang, Fangping & Cheng, Li & Yang, Fan & Jin, Yan & Zhu, Jun, 2021. "Numerical investigation and experiment on pressure pulsation characteristics in a full tubular pump," Renewable Energy, Elsevier, vol. 163(C), pages 987-1000.
    13. Zhang, Ning & Jiang, Junxian & Gao, Bo & Liu, Xiaokai & Ni, Dan, 2020. "Numerical analysis of the vortical structure and its unsteady evolution of a centrifugal pump," Renewable Energy, Elsevier, vol. 155(C), pages 748-760.
    14. Zhang, Ning & Jiang, Junxian & Gao, Bo & Liu, Xiaokai, 2020. "DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump," Renewable Energy, Elsevier, vol. 153(C), pages 193-204.
    15. Olszewski, Pawel & Arafeh, Jamal, 2018. "Parametric analysis of pumping station with parallel-configured centrifugal pumps towards self-learning applications," Applied Energy, Elsevier, vol. 231(C), pages 1146-1158.
    16. Ning Zhang & Delin Li & Bo Gao & Dan Ni & Zhong Li, 2022. "Unsteady Pressure Pulsations in Pumps—A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    17. Federico Fontana & Massimo Masi, 2023. "A Hybrid Experimental-Numerical Method to Support the Design of Multistage Pumps," Energies, MDPI, vol. 16(12), pages 1-20, June.
    18. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    19. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    20. Yuquan Zhang & Yanhe Xu & Yuan Zheng & E. Fernandez-Rodriguez & Aoran Sun & Chunxia Yang & Jue Wang, 2019. "Multiobjective Optimization Design and Experimental Investigation on the Axial Flow Pump with Orthogonal Test Approach," Complexity, Hindawi, vol. 2019, pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8518-:d:972650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.