IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7955-d954267.html
   My bibliography  Save this article

Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study

Author

Listed:
  • Bilal Taghezouit

    (Centre de Développement des Energies Renouvelables, CDER, B.P. 62, Route de l’Observatoire, Algiers 16340, Algeria
    Laboratoire de Dispositifs de Communication et de Conversion Photovoltaïque, Ecole Nationale Polytechnique Alger, Algiers 16200, Algeria)

  • Fouzi Harrou

    (Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia)

  • Cherif Larbes

    (Laboratoire de Dispositifs de Communication et de Conversion Photovoltaïque, Ecole Nationale Polytechnique Alger, Algiers 16200, Algeria)

  • Ying Sun

    (Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia)

  • Smail Semaoui

    (Centre de Développement des Energies Renouvelables, CDER, B.P. 62, Route de l’Observatoire, Algiers 16340, Algeria)

  • Amar Hadj Arab

    (Centre de Développement des Energies Renouvelables, CDER, B.P. 62, Route de l’Observatoire, Algiers 16340, Algeria)

  • Salim Bouchakour

    (Centre de Développement des Energies Renouvelables, CDER, B.P. 62, Route de l’Observatoire, Algiers 16340, Algeria)

Abstract

The capacity of photovoltaic solar power installations has been boosted last years by reaching a new record with 175 GWdc of newly installed solar power in 2021. To guarantee reliable performances of photovoltaic (PV) plants and maintain target requirements, faults have to be reliably detected and diagnosed. A method for an effective and reliable fault diagnosis of PV plants based on the behavioral model and performance analysis under the LabVIEW environment is presented in this paper. Specifically, the first phase of this study consists of the behavioral modeling of the PV array and the inverter in order to estimate the electricity production and analyze the performance of the 9.54 kWp Grid Connected PV System (GCPVS). Here, the results obtained from the empirical models were validated and calibrated by experimental data. Furthermore, a user interface for modeling and analyzing the performance of a PV system under LabVIEW has been designed. The second phase of this work is dedicated to the design of a simple and efficient diagnostic tool in order to detect and recognize faults occurring in the PV systems. Essentially, the residuals obtained using the parametric models are analyzed via the performance loss rates (PLR) of four electrical indicators (i.e., DC voltage, DC current, DC power, and AC power). To evaluate the proposed method, numerous environmental anomalies and electrical faults affecting the GCPVS were taken into account. Results demonstrated the satisfactory prediction performance of the considered empirical models to predict the considered variables, including DC current, DC power, and AC power with an R 2 of 0.99. Moreover, the obtained results show that the detection and recognition of faults were successfully achieved.

Suggested Citation

  • Bilal Taghezouit & Fouzi Harrou & Cherif Larbes & Ying Sun & Smail Semaoui & Amar Hadj Arab & Salim Bouchakour, 2022. "Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study," Energies, MDPI, vol. 15(21), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7955-:d:954267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrou, Fouzi & Sun, Ying & Taghezouit, Bilal & Saidi, Ahmed & Hamlati, Mohamed-Elkarim, 2018. "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," Renewable Energy, Elsevier, vol. 116(PA), pages 22-37.
    2. Blaifi, Sid-ali & Moulahoum, Samir & Taghezouit, Bilal & Saim, Abdelhakim, 2019. "An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 745-760.
    3. Massi Pavan, A. & Mellit, A. & De Pieri, D. & Kalogirou, S.A., 2013. "A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants," Applied Energy, Elsevier, vol. 108(C), pages 392-401.
    4. Yao Wang & Cuiyan Bai & Xiaopeng Qian & Wanting Liu & Chen Zhu & Leijiao Ge, 2022. "A DC Series Arc Fault Detection Method Based on a Lightweight Convolutional Neural Network Used in Photovoltaic System," Energies, MDPI, vol. 15(8), pages 1-20, April.
    5. Meng-Hui Wang & Zong-Han Lin & Shiue-Der Lu, 2022. "A Fault Detection Method Based on CNN and Symmetrized Dot Pattern for PV Modules," Energies, MDPI, vol. 15(17), pages 1-17, September.
    6. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    7. Jingwei Zhang & Zenan Yang & Kun Ding & Li Feng & Frank Hamelmann & Xihui Chen & Yongjie Liu & Ling Chen, 2022. "Modeling of Photovoltaic Array Based on Multi-Agent Deep Reinforcement Learning Using Residuals of I–V Characteristics," Energies, MDPI, vol. 15(18), pages 1-17, September.
    8. Salim Bouchakour & Daniel Valencia-Caballero & Alvaro Luna & Eduardo Roman & El Amin Kouadri Boudjelthia & Pedro Rodríguez, 2021. "Modelling and Simulation of Bifacial PV Production Using Monofacial Electrical Models," Energies, MDPI, vol. 14(14), pages 1-16, July.
    9. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Online fault detection and the economic analysis of grid-connected photovoltaic systems," Energy, Elsevier, vol. 134(C), pages 121-135.
    10. Fouzi Harrou & Bilal Taghezouit & Sofiane Khadraoui & Abdelkader Dairi & Ying Sun & Amar Hadj Arab, 2022. "Ensemble Learning Techniques-Based Monitoring Charts for Fault Detection in Photovoltaic Systems," Energies, MDPI, vol. 15(18), pages 1-28, September.
    11. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    12. Roberto Pierdicca & Marina Paolanti & Andrea Felicetti & Fabio Piccinini & Primo Zingaretti, 2020. "Automatic Faults Detection of Photovoltaic Farms: solAIr, a Deep Learning-Based System for Thermal Images," Energies, MDPI, vol. 13(24), pages 1-17, December.
    13. Chao-Ming Huang & Shin-Ju Chen & Sung-Pei Yang, 2022. "A Parameter Estimation Method for a Photovoltaic Power Generation System Based on a Two-Diode Model," Energies, MDPI, vol. 15(4), pages 1-16, February.
    14. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    15. Christopher Gradwohl & Vesna Dimitrievska & Federico Pittino & Wolfgang Muehleisen & András Montvay & Franz Langmayr & Thomas Kienberger, 2021. "A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic," Energies, MDPI, vol. 14(5), pages 1-23, February.
    16. Benkercha, Rabah & Moulahoum, Samir & Taghezouit, Bilal, 2019. "Extraction of the PV modules parameters with MPP estimation using the modified flower algorithm," Renewable Energy, Elsevier, vol. 143(C), pages 1698-1709.
    17. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elmamoune Halassa & Lakhdar Mazouz & Abdellatif Seghiour & Aissa Chouder & Santiago Silvestre, 2023. "Revolutionizing Photovoltaic Systems: An Innovative Approach to Maximum Power Point Tracking Using Enhanced Dandelion Optimizer in Partial Shading Conditions," Energies, MDPI, vol. 16(9), pages 1-23, April.
    2. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    2. Benamar Bouyeddou & Fouzi Harrou & Bilal Taghezouit & Ying Sun & Amar Hadj Arab, 2022. "Improved Semi-Supervised Data-Mining-Based Schemes for Fault Detection in a Grid-Connected Photovoltaic System," Energies, MDPI, vol. 15(21), pages 1-22, October.
    3. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    4. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    5. Li, Chenxi & Yang, Yongheng & Spataru, Sergiu & Zhang, Kanjian & Wei, Haikun, 2021. "A robust parametrization method of photovoltaic modules for enhancing one-diode model accuracy under varying operating conditions," Renewable Energy, Elsevier, vol. 168(C), pages 764-778.
    6. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
    7. Belaout, A. & Krim, F. & Mellit, A. & Talbi, B. & Arabi, A., 2018. "Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification," Renewable Energy, Elsevier, vol. 127(C), pages 548-558.
    8. Yu, Cao & Wang, Haizheng & Yao, Jianxi & Zhao, Jian & Sun, Qian & Zhu, Honglu, 2020. "A dynamic alarm threshold setting method for photovoltaic array and its application," Renewable Energy, Elsevier, vol. 158(C), pages 13-22.
    9. Harrou, Fouzi & Sun, Ying & Taghezouit, Bilal & Saidi, Ahmed & Hamlati, Mohamed-Elkarim, 2018. "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," Renewable Energy, Elsevier, vol. 116(PA), pages 22-37.
    10. Fouzi Harrou & Ying Sun & Bilal Taghezouit & Abdelkader Dairi, 2023. "Artificial Intelligence Techniques for Solar Irradiance and PV Modeling and Forecasting," Energies, MDPI, vol. 16(18), pages 1-5, September.
    11. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    13. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    14. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan & Abdulrahman Alraeesi, 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    15. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    16. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
    17. Mohamed Benghanem & Adel Mellit & Chourouk Moussaoui, 2023. "Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    18. Fouzi Harrou & Bilal Taghezouit & Sofiane Khadraoui & Abdelkader Dairi & Ying Sun & Amar Hadj Arab, 2022. "Ensemble Learning Techniques-Based Monitoring Charts for Fault Detection in Photovoltaic Systems," Energies, MDPI, vol. 15(18), pages 1-28, September.
    19. Nien-Che Yang & Harun Ismail, 2022. "Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    20. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7955-:d:954267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.