IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6865-d919923.html
   My bibliography  Save this article

Coupling Analysis on the Thermophysical Parameters and the Performance of Liquid Cooling-Based Thermal Management System for Lithium-Ion Batteries

Author

Listed:
  • Shuai Mao

    (College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Gansu Province, Lanzhou 730050, China)

  • Zhoujian An

    (College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Gansu Province, Lanzhou 730050, China)

  • Xiaoze Du

    (College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Gansu Province, Lanzhou 730050, China)

  • Tianlu Shi

    (College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Gansu Province, Lanzhou 730050, China)

  • Dong Zhang

    (College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Gansu Province, Lanzhou 730050, China)

Abstract

In order to ensure the safety and extend the lifecycle of lithium-ion power batteries in electric vehicles, a battery thermal management system based on minichannel liquid cooling is proposed to cool rectangular lithium-ion batteries, and a three-dimensional cooling system model is established. The effects of the number of channels, the thickness of heat conducting silicone grease and the thermal conductivity of the battery itself on the temperature rise and voltage drop changes during the discharge process of the battery are studied. The results show that the maximum temperature of the battery decreases with the increase of the number of channels, and the voltage drop inside the channel increases with the increase of the number of channels. The maximum temperature of the battery increases with the increase of the thickness of the thermal grease, but the increase is only 1.26 K. The maximum temperature and local temperature difference of the battery change significantly with the change of the thickness of the battery and its own thermal conductivity. The simulation results will be beneficial to the design of a battery thermal management system based on minichannel liquid cooling.

Suggested Citation

  • Shuai Mao & Zhoujian An & Xiaoze Du & Tianlu Shi & Dong Zhang, 2022. "Coupling Analysis on the Thermophysical Parameters and the Performance of Liquid Cooling-Based Thermal Management System for Lithium-Ion Batteries," Energies, MDPI, vol. 15(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6865-:d:919923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    2. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Quan & Ren, Yi & Wang, Zili & Yang, Dezhen & Yan, Peiyu & Wu, Zeyu & Sun, Bo & Feng, Qiang & Qian, Cheng, 2023. "Safety risk assessment method for thermal abuse of lithium-ion battery pack based on multiphysics simulation and improved bisection method," Energy, Elsevier, vol. 264(C).
    2. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    3. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    4. Li, Yihuan & Li, Kang & Liu, Xuan & Li, Xiang & Zhang, Li & Rente, Bruno & Sun, Tong & Grattan, Kenneth T.V., 2022. "A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements," Applied Energy, Elsevier, vol. 325(C).
    5. Sheng Yang & Wenwei Wang & Cheng Lin & Weixiang Shen & Yiding Li, 2019. "Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions," Energies, MDPI, vol. 12(10), pages 1-16, May.
    6. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    7. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    8. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
    9. Chuanwei Zhang & Zhan Xia & Huaibin Gao & Jianping Wen & Shangrui Chen & Meng Dang & Sujing Gu & Jianing Zhang, 2020. "A Coolant Circulation Cooling System Combining Aluminum Plates and Copper Rods for Li-Ion Battery Pack," Energies, MDPI, vol. 13(17), pages 1-14, August.
    10. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    11. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    12. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    13. Coman, Paul T. & Darcy, Eric C. & Veje, Christian T. & White, Ralph E., 2017. "Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway," Applied Energy, Elsevier, vol. 203(C), pages 189-200.
    14. Kim, Seongyoon & Choi, Yun Young & Choi, Jung-Il, 2022. "Impedance-based capacity estimation for lithium-ion batteries using generative adversarial network," Applied Energy, Elsevier, vol. 308(C).
    15. Meng, Lingyu & See, K.W. & Wang, Guofa & Wang, Yunpeng & Zhang, Yong & Zang, Caiyun & Xie, Bin, 2022. "Explosion-proof lithium-ion battery pack – In-depth investigation and experimental study on the design criteria," Energy, Elsevier, vol. 249(C).
    16. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    17. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    18. Wang, Qian-Kun & He, Yi-Jun & Shen, Jia-Ni & Ma, Zi-Feng & Zhong, Guo-Bin, 2017. "A unified modeling framework for lithium-ion batteries: An artificial neural network based thermal coupled equivalent circuit model approach," Energy, Elsevier, vol. 138(C), pages 118-132.
    19. Robby Dwianto Widyantara & Muhammad Adnan Naufal & Poetro Lebdo Sambegoro & Ignatius Pulung Nurprasetio & Farid Triawan & Djati Wibowo Djamari & Asep Bayu Dani Nandiyanto & Bentang Arief Budiman & Muh, 2021. "Low-Cost Air-Cooling System Optimization on Battery Pack of Electric Vehicle," Energies, MDPI, vol. 14(23), pages 1-14, November.
    20. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6865-:d:919923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.