IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6644-d912433.html
   My bibliography  Save this article

Techno-Economic Comparison of Utility-Scale Compressed Air and Electro-Chemical Storage Systems

Author

Listed:
  • Coriolano Salvini

    (Department of Industrial, Electronic and Mechanical Engineering, University of Roma TRE, 00154 Roma, Italy)

  • Ambra Giovannelli

    (Department of Industrial, Electronic and Mechanical Engineering, University of Roma TRE, 00154 Roma, Italy)

Abstract

The paper deals with a techno-economic comparison between utility-scale diabatic compressed air energy storage (D-CAES) systems equipped with artificial storage and Battery Energy Storage (BES) systems based on consolidated technologies, such as Sodium-Sulfur (Na-S) and Lithium-ion (Li-Ion). The comparison is carried out on the basis of the levelized cost of storage (LCOS). Analyses have been performed by varying key inputs, such as the rated power, the storage capacity, the price of electricity absorbed from the grid during the charging phase, and the cost of fuel fed to D-CAES during the discharge phase. Na-S technology-based systems always show better techno-economic performance in respect to Li-Ion based ones. The economic performance of both D-CAES and BES improves by increasing the storage capacity. The D-CAES performance improvement rate, however, is higher than that estimated for BES based systems. Moreover, the economic performance of D-CAES systems is less sensitive to the price of electricity in respect of BES based storage facilities. As a result, D-CAES based solutions can reach a LCOS lower than that of Na-S batteries if the size of the system and the price of electricity are large enough.

Suggested Citation

  • Coriolano Salvini & Ambra Giovannelli, 2022. "Techno-Economic Comparison of Utility-Scale Compressed Air and Electro-Chemical Storage Systems," Energies, MDPI, vol. 15(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6644-:d:912433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Long-Xiang & Hu, Peng & Sheng, Chun-Chen & Xie, Mei-Na, 2017. "A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source," Energy, Elsevier, vol. 131(C), pages 259-266.
    2. Li, Yongliang & Sciacovelli, Adriano & Peng, Xiaodong & Radcliffe, Jonathan & Ding, Yulong, 2016. "Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas," Applied Energy, Elsevier, vol. 171(C), pages 26-36.
    3. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Coriolano Salvini, 2018. "CAES Systems Integrated into a Gas-Steam Combined Plant: Design Point Performance Assessment," Energies, MDPI, vol. 11(2), pages 1-17, February.
    5. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    6. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    7. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    8. Claudia Rahmann & Benjamin Mac-Clure & Vijay Vittal & Felipe Valencia, 2017. "Break-Even Points of Battery Energy Storage Systems for Peak Shaving Applications," Energies, MDPI, vol. 10(7), pages 1-13, June.
    9. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    10. Jülch, Verena, 2016. "Comparison of electricity storage options using levelized cost of storage (LCOS) method," Applied Energy, Elsevier, vol. 183(C), pages 1594-1606.
    11. Csereklyei, Zsuzsanna & Kallies, Anne & Diaz Valdivia, Andres, 2021. "The status of and opportunities for utility-scale battery storage in Australia: A regulatory and market perspective," Utilities Policy, Elsevier, vol. 73(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sorknæs, Peter & Thellufsen, Jakob Zinck & Knobloch, Kai & Engelbrecht, Kurt & Yuan, Meng, 2023. "Economic potentials of carnot batteries in 100% renewable energy systems," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leszczyński, Jacek S. & Gryboś, Dominik & Markowski, Jan, 2023. "Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system," Applied Energy, Elsevier, vol. 350(C).
    2. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    3. Coriolano Salvini, 2018. "CAES Systems Integrated into a Gas-Steam Combined Plant: Design Point Performance Assessment," Energies, MDPI, vol. 11(2), pages 1-17, February.
    4. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Perroit, Quentin & Davies, Simon & Revellin, Rémi, 2020. "Thermodynamic simulation of a micro advanced adiabatic compressed air energy storage for building application," Applied Energy, Elsevier, vol. 260(C).
    5. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    6. Julian David Hunt & Behnam Zakeri & Andreas Nascimento & Diego Augusto de Jesus Pacheco & Epari Ritesh Patro & Bojan Đurin & Márcio Giannini Pereira & Walter Leal Filho & Yoshihide Wada, 2023. "Isothermal Deep Ocean Compressed Air Energy Storage: An Affordable Solution for Seasonal Energy Storage," Energies, MDPI, vol. 16(7), pages 1-18, March.
    7. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
    8. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    10. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    11. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    12. Llamas, Bernardo & Laín, Carlos & Castañeda, M. Cruz & Pous, Juan, 2018. "Mini-CAES as a reliable and novel approach to storing renewable energy in salt domes," Energy, Elsevier, vol. 144(C), pages 482-489.
    13. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Luo, Xing & Dooner, Mark & He, Wei & Wang, Jihong & Li, Yaowang & Li, Decai & Kiselychnyk, Oleh, 2018. "Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications," Applied Energy, Elsevier, vol. 228(C), pages 1198-1219.
    15. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    16. Wenger, Erez & Epstein, Michael & Kribus, Abraham, 2017. "Thermo-electro-chemical storage (TECS) of solar energy," Applied Energy, Elsevier, vol. 190(C), pages 788-799.
    17. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Ortega-Fernández, Iñigo & Zavattoni, Simone A. & Rodríguez-Aseguinolaza, Javier & D'Aguanno, Bruno & Barbato, Maurizio C., 2017. "Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology," Applied Energy, Elsevier, vol. 205(C), pages 280-293.
    19. Zhan, Junpeng & Ansari, Osama Aslam & Liu, Weijia & Chung, C.Y., 2019. "An accurate bilinear cavern model for compressed air energy storage," Applied Energy, Elsevier, vol. 242(C), pages 752-768.
    20. Li, Ruixiong & Wang, Huanran & Zhang, Haoran, 2019. "Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 326-339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6644-:d:912433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.