IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6485-d907222.html
   My bibliography  Save this article

Inventory Routing for Ammonia Supply in German Ports

Author

Listed:
  • Felix Prause

    (Institute of Mathematics, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany)

  • Gunnar Prause

    (School of Business and Governance, Tallinn University of Technology, Ehitajate Tee 5, 12616 Tallinn, Estonia
    Wismar Business School, Wismar University of Applied Sciences, Philipp-Müller-Str. 14, 23966 Wismar, Germany)

  • Robert Philipp

    (Wismar Business School, Wismar University of Applied Sciences, Philipp-Müller-Str. 14, 23966 Wismar, Germany
    Berlin Institute of Co-Operative Studies, Humboldt-Universität, Luisenstraße 53, 10117 Berlin, Germany)

Abstract

Following the International Maritime Organization (IMO), in order to safeguard the realization of the Paris Agreement on climate protection, greenhouse gas (GHG) emissions have to be reduced by 50% by the year 2050. This objective shall be reached by decarbonization of maritime traffic, which is why ship operators currently increasingly search for alternative fuels. Moreover, since the start of the Ukrainian war in February 2022, this issue of alternative fuels has gained central importance in political agendas. A promising candidate for clean shipping that meets the IMO goals is ammonia since it is a carbon-free fuel. Ammonia (NH 3 ) shows good advantages in handling and storage, and it ensures long sea voyages without any significant loss in cargo space for a reasonable price. Hence, ammonia has the potential to improve the environmental footprint of global shipping enormously. Induced by the introduction of stricter regulations in the so-called emission control areas (ECAs) in Northern Europe in 2015 as well as the renewed global sulfur cap, which entered into force in 2020, ship operators had to decide between different compliance methods, among which the most popular solutions are related to the use of expensive low-sulfur fuel oils, newbuilds and retrofits for the usage of liquefied natural gas (LNG) or the installation of scrubber technology. A change to ammonia as a marine alternative fuel represents an additional novel future option, but the successful implementation depends on the availability of NH 3 in the ports, i.e., on the installation of the maritime NH 3 infrastructure. Currently, the single German NH 3 terminal with maritime access is located in Brunsbüttel, the western entrance to Kiel Canal. The distribution of NH 3 from the existing NH 3 hub to other German ports can be analyzed by the mathematical model of an inventory routing problem (IRP) that is usually solved by combinatorial optimization methods. This paper investigates the interrelated research questions, how the distribution of marine NH 3 fuel can be modeled as an IRP, which distribution mode is the most economic one for the German ports and which modal mix for the NH 3 supply leads to the greenest distribution. The results of this paper are empirically validated by data that were collected in several EU projects on sustainable supply chain management and green logistics. The paper includes a special section that is dedicated to the discussion of the economic turbulences related to the Ukrainian war together with their implications on maritime shipping.

Suggested Citation

  • Felix Prause & Gunnar Prause & Robert Philipp, 2022. "Inventory Routing for Ammonia Supply in German Ports," Energies, MDPI, vol. 15(17), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6485-:d:907222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    2. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    3. Tolga Bektaş & Emrah Demir & Gilbert Laporte, 2016. "Green Vehicle Routing," International Series in Operations Research & Management Science, in: Harilaos N. Psaraftis (ed.), Green Transportation Logistics, edition 127, chapter 0, pages 243-265, Springer.
    4. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    5. Cheng, Chun & Qi, Mingyao & Wang, Xingyi & Zhang, Ying, 2016. "Multi-period inventory routing problem under carbon emission regulations," International Journal of Production Economics, Elsevier, vol. 182(C), pages 263-275.
    6. Roel G. van Anholt & Leandro C. Coelho & Gilbert Laporte & Iris F. A. Vis, 2016. "An Inventory-Routing Problem with Pickups and Deliveries Arising in the Replenishment of Automated Teller Machines," Transportation Science, INFORMS, vol. 50(3), pages 1077-1091, August.
    7. Claudia Archetti & Luca Bertazzi & Gilbert Laporte & Maria Grazia Speranza, 2007. "A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem," Transportation Science, INFORMS, vol. 41(3), pages 382-391, August.
    8. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    9. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    10. Sina Atari & Yassine Bakkar & Eunice Omolola Olaniyi & Gunnar Prause, 2019. "Real options analysis of abatement investments for sulphur emission control compliance," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(3), pages 1062-1087, March.
    11. Gunnar Prause & Eunice Omolola Olaniyi, 2019. "A compliance cost analysis of the SECA regulation in the Baltic Sea," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(4), pages 1907-1921, June.
    12. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    13. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yue & Feng, Qiang & Fan, Dongming & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2023. "Optimization of maritime support network with relays under uncertainty: A novel matheuristics method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Magdalena Klopott & Marzenna Popek & Ilona Urbanyi-Popiołek, 2023. "Seaports’ Role in Ensuring the Availability of Alternative Marine Fuels—A Multi-Faceted Analysis," Energies, MDPI, vol. 16(7), pages 1-30, March.
    3. Gunnar Prause & Eunice O. Olaniyi & Wolfgang Gerstlberger, 2023. "Ammonia Production as Alternative Energy for the Baltic Sea Region," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
    2. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    3. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    4. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    5. Hadi Jahangir & Mohammad Mohammadi & Seyed Hamid Reza Pasandideh & Neda Zendehdel Nobari, 2019. "Comparing performance of genetic and discrete invasive weed optimization algorithms for solving the inventory routing problem with an incremental delivery," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2327-2353, August.
    6. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    7. Ahmed Kheiri, 2020. "Heuristic Sequence Selection for Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 302-312, March.
    8. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    9. Bertazzi, Luca & Chua, Geoffrey A. & Laganà, Demetrio & Paradiso, Rosario, 2022. "Analysis of effective sets of routes for the split-delivery periodic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 298(2), pages 463-477.
    10. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    11. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    12. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    13. Zhouxing Su & Zhipeng Lü & Zhuo Wang & Yanmin Qi & Una Benlic, 2020. "A Matheuristic Algorithm for the Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 330-354, March.
    14. Sıla Çetinkaya & Halit Üster & Gopalakrishnan Easwaran & Burcu Baris Keskin, 2009. "An Integrated Outbound Logistics Model for Frito-Lay: Coordinating Aggregate-Level Production and Distribution Decisions," Interfaces, INFORMS, vol. 39(5), pages 460-475, October.
    15. Oğuz Solyalı & Haldun Süral, 2011. "A Branch-and-Cut Algorithm Using a Strong Formulation and an A Priori Tour-Based Heuristic for an Inventory-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 335-345, August.
    16. Sonntag, Danja R. & Schrotenboer, Albert H. & Kiesmüller, Gudrun P., 2023. "Stochastic inventory routing with time-based shipment consolidation," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1186-1201.
    17. Bertazzi, Luca & Coelho, Leandro C. & De Maio, Annarita & Laganà, Demetrio, 2019. "A matheuristic algorithm for the multi-depot inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 524-544.
    18. Moon, Ilkyeong & Feng, Xuehao, 2017. "Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 78-97.
    19. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    20. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6485-:d:907222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.