IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5757-d883270.html
   My bibliography  Save this article

Analysis of the Impact of Propanol-Gasoline Blends on Lubricant Oil Degradation and Spark-Ignition Engine Characteristics

Author

Listed:
  • Muhammad Kashif Jamil

    (Mechanical Engineering Department, RCET Campus, University of Engineering and Technology, Gujranwala 52250, Pakistan)

  • Maaz Akhtar

    (Mechanical Engineering Department, NED University of Engineering and Technology, Karachi 75270, Pakistan)

  • Muhammad Farooq

    (Mechanical Engineering Department, University of Engineering and Technology, G.T. Road, Lahore 54890, Pakistan)

  • Muhammad Mujtaba Abbas

    (Mechanical Engineering Department, University of Engineering and Technology, G.T. Road, Lahore 54890, Pakistan)

  • Saad

    (Mechanical Engineering Department, RCET Campus, University of Engineering and Technology, Gujranwala 52250, Pakistan)

  • Muhammad Khuzaima

    (Mechanical Engineering Department, RCET Campus, University of Engineering and Technology, Gujranwala 52250, Pakistan)

  • Khurshid Ahmad

    (Mechanical Engineering Department, RCET Campus, University of Engineering and Technology, Gujranwala 52250, Pakistan)

  • Md Abul Kalam

    (Faculty of Engineering and IT, University of Technology Sydney, Sydney 2007, Australia)

  • Anas Abdelrahman

    (Mechanical Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11835, Egypt)

Abstract

Alcoholic fuels have recently come to light as a sustainable source for powering today’s vehicles. Various studies have investigated the effects of alcoholic fuels on engine efficiency and emission characteristics. However, scarce literature is available for their effects on lubricant. Therefore, propanol-gasoline fuel mixtures, with concentrations of 9% (P9) and 18% (P18) propanol, were made to compare their engine characteristics and lubricating oil condition with that of pure gasoline (0 percent propanol (P0)). To determine the rate of deterioration, the characteristics of the lubricating oil were evaluated after 100 h of engine operation, as suggested by the manufacturer. When compared with unused lube oil, P18 showed reductions in flash point temperature and kinematic viscosity of 14% and 36%, respectively, at 100 °C. For P18, which contains Fe (27 PPM), Al (11 PPM), and Cu (14 PPM), the highest wear element concentrations in the lubricating oil were found. The moisture in the degraded oil was well within the allowable limit for the three fuel mixtures. With the increase in propanol percentage in the propanol-gasoline blend, the engine performance was increased. Compared to P9 and P0, P18 had the partially unburned emissions.

Suggested Citation

  • Muhammad Kashif Jamil & Maaz Akhtar & Muhammad Farooq & Muhammad Mujtaba Abbas & Saad & Muhammad Khuzaima & Khurshid Ahmad & Md Abul Kalam & Anas Abdelrahman, 2022. "Analysis of the Impact of Propanol-Gasoline Blends on Lubricant Oil Degradation and Spark-Ignition Engine Characteristics," Energies, MDPI, vol. 15(15), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5757-:d:883270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fagundez, J.L.S. & Golke, D. & Martins, M.E.S. & Salau, N.P.G., 2019. "An investigation on performance and combustion characteristics of pure n-butanol and a blend of n-butanol/ethanol as fuels in a spark ignition engine," Energy, Elsevier, vol. 176(C), pages 521-530.
    2. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.
    3. Muhammad Usman & Muhammad Kashif Jamil & Fahid Riaz & Haris Hussain & Ghulam Hussain & Muhammad Haris Shah & Muhammad Abdul Qyyum & Chaudhary Awais Salman & Moonyong Lee, 2021. "Refining and Reuse of Waste Lube Oil in SI Engines: A Novel Approach for a Sustainable Environment," Energies, MDPI, vol. 14(10), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sathish Kumar, T. & Ashok, B. & Saravanan, B., 2023. "Calibration of flex-fuel operating parameters using grey relational analysis to enhance the output characteristics of ethanol powered direct injection SI engine," Energy, Elsevier, vol. 281(C).
    2. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    3. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    4. Li, Xiaoyan & Zhen, Xudong & Wang, Yang & Tian, Zhi, 2022. "Numerical comparative study on performance and emissions characteristics fueled with methanol, ethanol and methane in high compression spark ignition engine," Energy, Elsevier, vol. 254(PA).
    5. Marietta Markiewicz, 2024. "Analysis of Performance Parameters of Engines with Spark Ignition with Variable Regulations of the Fuel-Injection System, Powered by E100 Fuel," Energies, MDPI, vol. 17(3), pages 1-18, January.
    6. Wermer, Lydia & Lefkowitz, Joseph K. & Ombrello, Timothy & Im, Seong-kyun, 2021. "Spark and flame kernel interaction with dual-pulse laser-induced spark ignition in a lean premixed methane–air flow," Energy, Elsevier, vol. 215(PB).
    7. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    8. Süleyman Şimşek & Hasan Saygın & Bülent Özdalyan, 2020. "Improvement of Fusel Oil Features and Effect of Its Use in Different Compression Ratios for an SI Engine on Performance and Emission," Energies, MDPI, vol. 13(7), pages 1-14, April.
    9. Shang, Zhen & Yu, Xiumin & Ren, Lei & Wei, Guowu & Li, Guanting & Li, Decheng & Li, Yinan, 2020. "Comparative study on effects of injection mode on combustion and emission characteristics of a combined injection n-butanol/gasoline SI engine with hydrogen direct injection," Energy, Elsevier, vol. 213(C).
    10. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    11. Muhammad Usman & Muhammad Ali Ijaz Malik & Tariq Nawaz Chaudhary & Fahid Riaz & Sohaib Raza & Muhammad Abubakar & Farrukh Ahmad Malik & Hafiz Muhammad Ahmad & Yasser Fouad & Muhammad Mujtaba Abbas & M, 2023. "Comparative Assessment of Ethanol and Methanol–Ethanol Blends with Gasoline in SI Engine for Sustainable Development," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    12. Joaquim Costa & Jorge Martins & Tiago Arantes & Margarida Gonçalves & Luis Durão & Francisco P. Brito, 2021. "Experimental Assessment of the Performance and Emissions of a Spark-Ignition Engine Using Waste-Derived Biofuels as Additives," Energies, MDPI, vol. 14(16), pages 1-19, August.
    13. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    14. Muhammad Asim & Muhammad Hanzla Tahir & Ammara Kanwal & Fahid Riaz & Muhammad Amjad & Aamna Khalid & Muhammad Mujtaba Abbas & Ashfaq Ahmad & Mohammad Abul Kalam, 2023. "Effects of Varying Volume Fractions of SiO 2 and Al 2 O 3 on the Performance of Concentrated Photovoltaic System," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    15. Zhu, Ziji & Zheng, Zhaolei & Kong, Jun, 2021. "Construction of reduced mechanism and prediction of the RON of toluene primary reference fuel/ethanol/diisobutylene," Renewable Energy, Elsevier, vol. 172(C), pages 862-881.
    16. Diming Lou & Yedi Ren & Xiang Li & Yunhua Zhang & Xia Sun, 2020. "Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine," Energies, MDPI, vol. 13(18), pages 1-18, September.
    17. Muhamad Norkhizan Abdullah & Ahmad Fitri Yusop & Rizalman Mamat & Mohd Adnin Hamidi & Kumarasamy Sudhakar & Talal Yusaf, 2023. "Sustainable Biofuels from First Three Alcohol Families: A Critical Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    18. Dhande, D.Y. & Nighot, D.V. & Sinaga, Nazaruddin & Dahe, Kiran B., 2021. "Extraction of bioethanol from waste pomegranate fruits as a potential feedstock and its blending effects on a performance of a single cylinder SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5757-:d:883270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.