IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5630-d879177.html
   My bibliography  Save this article

Air-Side Nusselt Numbers and Friction Factor’s Individual Correlations of Finned Heat Exchangers

Author

Listed:
  • Mateusz Marcinkowski

    (Faculty of Environmental Engineering and Energy, Cracow University of Technology, 31-155 Cracow, Poland)

  • Dawid Taler

    (Faculty of Environmental Engineering and Energy, Cracow University of Technology, 31-155 Cracow, Poland)

  • Jan Taler

    (Faculty of Environmental Engineering and Energy, Cracow University of Technology, 31-155 Cracow, Poland)

  • Katarzyna Węglarz

    (Faculty of Environmental Engineering and Energy, Cracow University of Technology, 31-155 Cracow, Poland)

Abstract

Currently, when designing finned heat exchangers (FHE), the average value of the entire heat transfer coefficient (HTC) is considered. However, each row of the heat exchanger (HEX) has different hydraulic-thermal characteristics. The novelty of this research is to present the differentiation of the individual air-side Nusselt number and Darcy-Weisbach friction factor correlations in each row of FHE using CFD modelling. FHE has four-rows, circular tubes, and continuous fins with a staggered tube arrangement. Relationships for the Nusselt number and D-W friction factor derived for the entire exchanger based on CFD modelling were compared with those available in the literature, determined using experimental data. The maximum relative differences between the Nusselt number for a four-row FHE determined experimentally and by CFD modelling are in the range from 22% for a Reynolds number based on a tube outside diameter of 1000 to 30% for a Reynolds number of 13,000. The maximum relative differences between the D-W friction factor for a four-row FHE determined experimentally and by CFD modelling are in the range of 50% for a Reynolds number based on a tube outer diameter of 1000 to 10% for a Reynolds number of 13,000. The CFD modelling performed shows that in the range of Reynolds numbers based on hydraulic diameters from 150 to 1400, the Nusselt number for the first row in a four-row FHE is about 22% to 15% higher than the average Nusselt number for the entire exchanger. In the range of Reynolds number changes based on hydraulic diameter from 2800 to 6000, the Nusselt numbers on the first and second rows of tubes are close to each other. Correlations of Nusselt numbers and D-W friction factors derived for individual tube rows can be used in the design of plate-fin and tube heat exchangers used in equipment such as air-source heat pumps, automotive radiators, air-conditioning systems, and in air hot-liquid coolers. In particular, the correlations can be used to select the optimum number of tube rows in the exchanger.

Suggested Citation

  • Mateusz Marcinkowski & Dawid Taler & Jan Taler & Katarzyna Węglarz, 2022. "Air-Side Nusselt Numbers and Friction Factor’s Individual Correlations of Finned Heat Exchangers," Energies, MDPI, vol. 15(15), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5630-:d:879177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taler, Dawid & Taler, Jan & Trojan, Marcin, 2020. "Thermal calculations of plate–fin–and-tube heat exchangers with different heat transfer coefficients on each tube row," Energy, Elsevier, vol. 203(C).
    2. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    3. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    4. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    5. Mateusz Marcinkowski & Dawid Taler & Jan Taler & Katarzyna Węglarz, 2021. "Thermal Calculations of Four-Row Plate-Fin and Tube Heat Exchanger Taking into Account Different Air-Side Correlations on Individual Rows of Tubes for Low Reynold Numbers," Energies, MDPI, vol. 14(21), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aigul Zhanuzakovna Amrenova & Abay Mukhamediyarovich Dostiyarov & Iliya Krastev Iliev & Ayaulym Konysbekovna Yamanbekova & Rakhimzhan Kabievich Orumbayev & Dias Raybekovich Umyshev, 2023. "Experimental Investigation of Thermal-Hydraulic Performance of Externally Finned Tubes," Sustainability, MDPI, vol. 15(12), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mateusz Marcinkowski & Dawid Taler & Jan Taler & Katarzyna Węglarz, 2021. "Thermal Calculations of Four-Row Plate-Fin and Tube Heat Exchanger Taking into Account Different Air-Side Correlations on Individual Rows of Tubes for Low Reynold Numbers," Energies, MDPI, vol. 14(21), pages 1-13, October.
    2. Dawid Taler & Jan Taler & Marcin Trojan, 2020. "Experimental Verification of an Analytical Mathematical Model of a Round or Oval Tube Two-Row Car Radiator," Energies, MDPI, vol. 13(13), pages 1-23, July.
    3. Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
    4. Yong Bian & Chen Wang & Yajun Wang & Run Qin & Shunyi Song & Wenhao Qu & Lu Xue & Xiaosong Zhang, 2021. "The Effect of Dynamic Cold Storage Packed Bed on Liquid Air Energy Storage in an Experiment Scale," Energies, MDPI, vol. 15(1), pages 1-20, December.
    5. Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    6. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. Gang Liu & Yuanji Li & Pan Wei & Tian Xiao & Xiangzhao Meng & Xiaohu Yang, 2022. "Thermo-Economic Assessments on a Heat Storage Tank Filled with Graded Metal Foam," Energies, MDPI, vol. 15(19), pages 1-16, September.
    8. Zheng, Hangbin & Liu, Xianglei & Xuan, Yimin & Song, Chao & Liu, Dachuan & Zhu, Qibin & Zhu, Zhonghui & Gao, Ke & Li, Yongliang & Ding, Yulong, 2021. "Thermochemical heat storage performances of fluidized black CaCO3 pellets under direct concentrated solar irradiation," Renewable Energy, Elsevier, vol. 178(C), pages 1353-1369.
    9. Jordi García-Céspedes & Ignasi Herms & Georgina Arnó & José Juan de Felipe, 2022. "Fifth-Generation District Heating and Cooling Networks Based on Shallow Geothermal Energy: A review and Possible Solutions for Mediterranean Europe," Energies, MDPI, vol. 16(1), pages 1-31, December.
    10. Wang, Hang & Hu, Yige & Jiang, Feng & Ling, Xiang, 2022. "Thermal performance of industrial-grade CH3COONa·3H2O-based composite phase change materials in a plate heat storage unit," Energy, Elsevier, vol. 261(PA).
    11. Andrea Frazzica & Valeria Palomba & Angelo Freni, 2023. "Development and Experimental Characterization of an Innovative Tank-in-Tank Hybrid Sensible–Latent Thermal Energy Storage System," Energies, MDPI, vol. 16(4), pages 1-18, February.
    12. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    13. Duan, Juan & Peng, Zeyu, 2022. "Numerical investigation of nano-enhanced phase change material melting in the 3D annular tube with spiral fins," Renewable Energy, Elsevier, vol. 193(C), pages 251-263.
    14. Li, Chuan & Li, Qi & Ge, Ruihuan, 2023. "Comparison of performance enhancement in a shell and tube based latent heat thermal energy storage device containing different structured fins," Renewable Energy, Elsevier, vol. 206(C), pages 994-1006.
    15. Nan Yang & Weixiu Shi & Zihong Zhou, 2023. "Research on Application and International Policy of Renewable Energy in Buildings," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    16. Sihan Zhou & Lijie Zhu & Runan Wan & Tao Zhang & Yongzheng Zhang & Yi Zhan & Fang Wang & Linfeng Zhang & Tian You, 2023. "An Overview of Sandbox Experiment on Ground Heat Exchangers," Sustainability, MDPI, vol. 15(14), pages 1-39, July.
    17. Yongshi Feng & Xin Wu & Cai Liang & Zhongping Sun, 2022. "A Convenient Method for the Accurate Calculation of Fin Efficiency of H-Type Fins Based on Linear Nomograms and Fitting Formulae," Energies, MDPI, vol. 15(2), pages 1-14, January.
    18. Wojciech Judt, 2020. "Numerical and Experimental Analysis of Heat Transfer for Solid Fuels Combustion in Fixed Bed Conditions," Energies, MDPI, vol. 13(22), pages 1-18, November.
    19. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    20. Yang Xu & Hang Yin & Chen He & Yong Wei & Ming Cui & Zhang-Jing Zheng, 2022. "Structure Optimization of Longitudinal Rectangular Fins to Improve the Melting Performance of Phase Change Materials through Genetic Algorithm," Energies, MDPI, vol. 15(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5630-:d:879177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.