IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5276-d867619.html
   My bibliography  Save this article

Strengthening Resilience in the Energy Critical Infrastructure: Methodological Overview

Author

Listed:
  • David Rehak

    (Faculty of Safety Engineering, VSB-Technical University of Ostrava, Lumirova 13/630, 700 30 Ostrava, Czech Republic)

  • Simona Slivkova

    (Faculty of Safety Engineering, VSB-Technical University of Ostrava, Lumirova 13/630, 700 30 Ostrava, Czech Republic)

  • Heidi Janeckova

    (Faculty of Safety Engineering, VSB-Technical University of Ostrava, Lumirova 13/630, 700 30 Ostrava, Czech Republic)

  • Dominika Stuberova

    (Faculty of Safety Engineering, VSB-Technical University of Ostrava, Lumirova 13/630, 700 30 Ostrava, Czech Republic)

  • Martin Hromada

    (Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, 760 05 Zlin, Czech Republic)

Abstract

As the number of threats and the severity of their impact increases, an ever greater emphasis is being placed on the protection of critical infrastructure. Thus, the issue of resilience, or its assessment and strengthening, is increasingly coming to the fore. The resilience assessment of critical infrastructure, especially in the energy sector, has received considerable attention due to the high level of interest in this issue. However, the issue of strengthening resilience poses a significant challenge not only in the energy sector but also in the entire critical infrastructure system. Despite the great importance of this area, there is not a large number of authors moving in this direction and paying attention to resilience-strengthening tools. For this reason, the aim of this article is to provide the reader with a comprehensive methodological overview of resilience strengthening in the critical energy infrastructure sector. This article also provides an overview of internal and external tools suitable for strengthening resilience and presents a possible procedure for their application to energy critical infrastructure elements.

Suggested Citation

  • David Rehak & Simona Slivkova & Heidi Janeckova & Dominika Stuberova & Martin Hromada, 2022. "Strengthening Resilience in the Energy Critical Infrastructure: Methodological Overview," Energies, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5276-:d:867619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kathleen Araújo & David Shropshire, 2021. "A Meta-Level Framework for Evaluating Resilience in Net-Zero Carbon Power Systems with Extreme Weather Events in the United States," Energies, MDPI, vol. 14(14), pages 1-25, July.
    2. Pierre Picard, 2008. "Natural Disaster Insurance and the Equity‐Efficiency Trade‐Off," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(1), pages 17-38, March.
    3. Laugé, Ana & Hernantes, Josune & Sarriegi, Jose M., 2015. "Critical infrastructure dependencies: A holistic, dynamic and quantitative approach," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 16-23.
    4. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas, 2019. "Complex approach to assessing resilience of critical infrastructure elements," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 125-138.
    5. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas & Novotny, Petr, 2018. "Cascading Impact Assessment in a Critical Infrastructure System," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 125-138.
    6. Susara E. Merwe & Reinette Biggs & Rika Preiser, 2020. "Sensemaking as an approach for resilience assessment in an Essential Service Organization," Environment Systems and Decisions, Springer, vol. 40(1), pages 84-106, March.
    7. Brown, Charlotte & Seville, Erica & Vargo, John, 2017. "Measuring the organizational resilience of critical infrastructure providers: A New Zealand case study," International Journal of Critical Infrastructure Protection, Elsevier, vol. 18(C), pages 37-49.
    8. Kammouh, Omar & Gardoni, Paolo & Cimellaro, Gian Paolo, 2020. "Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    9. Dan Wei & Zhenhua Chen & Adam Rose, 2020. "Evaluating the role of resilience in reducing economic losses from disasters: A multi‐regional analysis of a seaport disruption," Papers in Regional Science, Wiley Blackwell, vol. 99(6), pages 1691-1722, December.
    10. Lindenberger, Dietmar & Bruckner, Thomas & Morrison, Robbie & Groscurth, Helmuth-M. & Kümmel, Reiner, 2004. "Modernization of local energy systems," Energy, Elsevier, vol. 29(2), pages 245-256.
    11. Nan, Cen & Sansavini, Giovanni, 2017. "A quantitative method for assessing resilience of interdependent infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 35-53.
    12. Kampova, Katarina & Lovecek, Tomas & Rehak, David, 2020. "Quantitative approach to physical protection systems assessment of critical infrastructure elements: Use case in the Slovak Republic," International Journal of Critical Infrastructure Protection, Elsevier, vol. 30(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ladislav Karda & Stepan Kavan, 2023. "Emergency Board Management as a Tool for Strengthening Resilience of the Electric Power Industry: A Case Study in the Czech Republic," Energies, MDPI, vol. 16(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Cinta Lomba-Fernández & Josune Hernantes & Leire Labaka, 2019. "Guide for Climate-Resilient Cities: An Urban Critical Infrastructures Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    4. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    5. Martin Hromada & David Rehak & Ludek Lukas, 2021. "Resilience Assessment in Electricity Critical Infrastructure from the Point of View of Converged Security," Energies, MDPI, vol. 14(6), pages 1-20, March.
    6. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    7. Yang, Jun & Huang, Leixiong & Ma, Haoming & Xu, Zhihui & Yang, Ming & Guo, Shaoqiang, 2022. "A 2D-graph model-based heuristic approach to visual backtracking security vulnerabilities in physical protection systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    8. Katerina Vichova & Martin Hromada & Martin Dzermansky & Lukas Snopek & Robert Pekaj, 2022. "Solving Power Outages in Healthcare Facilities: Algorithmisation and Assessment of Preparedness," Energies, MDPI, vol. 16(1), pages 1-14, December.
    9. Ahmad Jafari Ghezelhesar & Ali Bozorgi-Amiri, 2022. "A novel approach to selection of resilient measures portfolio under disruption and uncertainty: a case study of e-payment service providers," Operational Research, Springer, vol. 22(5), pages 5477-5527, November.
    10. Taghizadeh, Mehdi & Mahsuli, Mojtaba & Poorzahedy, Hossain, 2023. "Probabilistic framework for evaluating the seismic resilience of transportation systems during emergency medical response," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Corrado lo Storto, 2019. "An SNA-DEA Prioritization Framework to Identify Critical Nodes of Gas Networks: The Case of the US Interstate Gas Infrastructure," Energies, MDPI, vol. 12(23), pages 1-18, December.
    12. Zdenek Dvorak & Nikola Chovancikova & Jozef Bruk & Martin Hromada, 2021. "Methodological Framework for Resilience Assessment of Electricity Infrastructure in Conditions of Slovak Republic," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    13. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Qian, Lanping & Bai, Yang & Wang, Wenya & Meng, Fanyi & Chen, Zhisong, 2023. "Natural gas crisis, system resilience and emergency responses: A China case," Energy, Elsevier, vol. 276(C).
    17. Chen, Weiyi & Zhang, Limao, 2021. "Resilience assessment of regional areas against earthquakes using multi-source information fusion," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Pawel Gromek & Grzegorz Sobolewski, 2020. "Risk-Based Approach for Informing Sustainable Infrastructure Resilience Enhancement and Potential Resilience Implication in Terms of Emergency Service Perspective," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    19. Zhang, Lu & Cui, Li & Chen, Lujie & Dai, Jing & Jin, Ziyi & Wu, Hao, 2023. "A hybrid approach to explore the critical criteria of online supply chain finance to improve supply chain performance," International Journal of Production Economics, Elsevier, vol. 255(C).
    20. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5276-:d:867619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.