IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4923-d856410.html
   My bibliography  Save this article

Faulty Section Location Method Based on Dynamic Time Warping Distance in a Resonant Grounding System

Author

Listed:
  • Yu He

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Xinhui Zhang

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Rui Wang

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Mengzhu Cheng

    (Linyi Power Supply Company, State Grid Shandong Electric Power Company, Linyi 276000, China)

  • Zhen Gao

    (Gaoqing Power Supply Company, State Grid Shandong Electric Power Company, Zibo 256300, China)

  • Zheng Zhang

    (Caoxian Power Supply Company, State Grid Shandong Electric Power Company, Heze 276000, China)

  • Wenxin Yu

    (Laixi Power Supply Company, State Grid Shandong Electric Power Company, Qingdao 266600, China)

Abstract

When a single-phase grounding fault occurs in a resonant grounding system, the determination of the fault location remains a significant challenge due to the small fault current and the instability of the grounding arc. In order to solve the problem of low protection sensitivity when a high-resistance grounding fault occurs in a resonant grounding system, this paper proposes a fault location method based on the combination of dynamic time warping (DTW) distance and fuzzy C-means (FCM) clustering. By analyzing the characteristics of the zero-sequence current upstream and downstream of the fault point when a single-phase grounding fault occurs in the resonant grounding system, it is concluded that the waveform similarity on both sides of the fault point is low. DTW distance can be used to measure the similarity of two time series, and has the characteristics of good fault tolerance and synchronization error tolerance. According to the rule that the DTW value of faulty section is much larger than that of nonfaulty sections, FCM clustering is used to classify the DTW value of each section. The membership degree matrix and cluster centers are obtained. In the membership degree matrix, the section corresponding to the data in a class of their own is the faulty section, and all other data correspond to the nonfaulty section; otherwise, it is a fault occurring at the end of the line. The simulation results of MATLAB/Simulink and the field data test show that the method can accurately locate the faulty section.

Suggested Citation

  • Yu He & Xinhui Zhang & Rui Wang & Mengzhu Cheng & Zhen Gao & Zheng Zhang & Wenxin Yu, 2022. "Faulty Section Location Method Based on Dynamic Time Warping Distance in a Resonant Grounding System," Energies, MDPI, vol. 15(13), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4923-:d:856410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Darioush Razmi & Tianguang Lu, 2022. "A Literature Review of the Control Challenges of Distributed Energy Resources Based on Microgrids (MGs): Past, Present and Future," Energies, MDPI, vol. 15(13), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    2. Rodolfo Araneo & Salvatore Celozzi & Stefano Lauria & Erika Stracqualursi & Gianfranco Di Lorenzo & Marco Graziani, 2022. "Recent Trends in Power Systems Modeling and Analysis," Energies, MDPI, vol. 15(23), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    2. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    3. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    4. Emmanuel Hernández-Mayoral & Manuel Madrigal-Martínez & Jesús D. Mina-Antonio & Reynaldo Iracheta-Cortez & Jesús A. Enríquez-Santiago & Omar Rodríguez-Rivera & Gregorio Martínez-Reyes & Edwin Mendoza-, 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources," Sustainability, MDPI, vol. 15(12), pages 1-53, June.
    5. Md Shafiul Alam, 2022. "Power Management for Distributed Generators Integrated System," Energies, MDPI, vol. 15(16), pages 1-3, August.
    6. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    7. Boyang Huang & Yong Xiao & Xin Jin & Junhao Feng & Xin Li & Li Ding, 2022. "A Novel Dynamic Event-Triggered Mechanism for Distributed Secondary Control in Islanded AC Microgrids," Energies, MDPI, vol. 15(19), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4923-:d:856410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.