IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4645-d847357.html
   My bibliography  Save this article

Self-Supporting NiFe Layered Double Hydroxide “Nanoflower” Cluster Anode Electrode for an Efficient Alkaline Anion Exchange Membrane Water Electrolyzer

Author

Listed:
  • Dandan Guo

    (Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
    University of the Chinese Academy of Sciences, Beijing 100049, China)

  • Jun Chi

    (Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China)

  • Hongmei Yu

    (Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China)

  • Guang Jiang

    (Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
    University of the Chinese Academy of Sciences, Beijing 100049, China)

  • Zhigang Shao

    (Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China)

Abstract

The development of an efficient and durable oxygen evolution reaction (OER) electrode is needed to solve the bottleneck in the application of an anion exchange membrane water electrolyzer (AEMWE). In this work, the self-supporting NiFe layered double hydroxides (NiFe LDHs) “nanoflower” cluster OER electrode directly grown on the surface of nickel fiber felt (Ni fiber) was synthesized by a one-step impregnation at ambient pressure and temperature. The self-supporting NiFe LDHs/Ni fiber electrode showed excellent activity and stability in a three-electrode system and as the anode of AEMWE. In a three-electrode system, the NiFe LDHs/Ni fiber electrode showed excellent OER performance with an overpotential of 208 mV at a current density of 10 mA cm −2 in 1 M KOH. The NiFe LDHs/Ni fiber electrode was used as the anode of the AEMWE, showing high cell performance with a current density of 0.5 A cm −2 at 1.68 V and a stability test for 200 h in 1 M KOH at 70 °C. The electrocatalytic performance of NiFe LDHs/Ni fiber electrode is due to the special morphological structure of “nanoflower” cluster petals stretching outward to produce the “tip effect,” which is beneficial for the exposure of active sites at the edge and mass transfer under high current density. The experimental results show that the NiFe LDHs/Ni fiber electrode synthesized by the one-step impregnation method has the advantages of good activity and low cost, and it is promising for industrial application.

Suggested Citation

  • Dandan Guo & Jun Chi & Hongmei Yu & Guang Jiang & Zhigang Shao, 2022. "Self-Supporting NiFe Layered Double Hydroxide “Nanoflower” Cluster Anode Electrode for an Efficient Alkaline Anion Exchange Membrane Water Electrolyzer," Energies, MDPI, vol. 15(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4645-:d:847357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuting Luo & Lei Tang & Usman Khan & Qiangmin Yu & Hui-Ming Cheng & Xiaolong Zou & Bilu Liu, 2019. "Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Yuhai Dou & Chun-Ting He & Lei Zhang & Huajie Yin & Mohammad Al-Mamun & Jianmin Ma & Huijun Zhao, 2020. "Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Xin Chen & Junxiang Chen & Huayu Chen & Qiqi Zhang & Jiaxuan Li & Jiwei Cui & Yanhui Sun & Defa Wang & Jinhua Ye & Lequan Liu, 2023. "Promoting water dissociation for efficient solar driven CO2 electroreduction via improving hydroxyl adsorption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Chenyu Li & Zhijie Wang & Mingda Liu & Enze Wang & Bolun Wang & Longlong Xu & Kaili Jiang & Shoushan Fan & Yinghui Sun & Jia Li & Kai Liu, 2022. "Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Shu-Pei Zeng & Hang Shi & Tian-Yi Dai & Yang Liu & Zi Wen & Gao-Feng Han & Tong-Hui Wang & Wei Zhang & Xing-You Lang & Wei-Tao Zheng & Qing Jiang, 2023. "Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Qiangmin Yu & Zhiyuan Zhang & Siyao Qiu & Yuting Luo & Zhibo Liu & Fengning Yang & Heming Liu & Shiyu Ge & Xiaolong Zou & Baofu Ding & Wencai Ren & Hui-Ming Cheng & Chenghua Sun & Bilu Liu, 2021. "A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Wu, Zexing & Chen, Zhi & Xu, Kunhan & Li, Bin & Li, Zhenjiang & Xu, Guangrui & Xiao, Weiping & Ma, Tianyi & Fu, Yunlei & Wang, Lei, 2023. "Cationic defects coupled with trace Pt under the assistance of corrosive engineering for efficient hydrogen electrocatalysis with large current density," Renewable Energy, Elsevier, vol. 210(C), pages 196-202.
    12. Wei Liu & Xiting Wang & Fan Wang & Kaifa Du & Zhaofu Zhang & Yuzheng Guo & Huayi Yin & Dihua Wang, 2021. "A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4645-:d:847357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.