Author
Listed:
- Fangqing Wang
(Shandong University of Technology)
- Liu Feng
(Shandong University of Technology)
- Mingwei Zhang
(Shandong University of Technology
Shandong University of Technology)
- Hailin Cong
(Shandong University of Technology
Zaozhuang University)
Abstract
The lattice oxygen oxidation mechanism typically requires the removal of electrons from the metal-oxygen band, which may cause structural instability due to a decrease in the metal-oxygen bond order. To address this challenge, we introduce low-valence, non-catalytically active Na to construct oxygen non-bonding bands on high-entropy hydroxides, allowing electrons to be removed from the oxygen non-bonding band rather than the metal-oxygen bonds, thereby improving the stability of the catalyst. Na doped high-entropy layered double hydroxide (Na-HE LDH) with a low overpotential of 176 mV@10 mA cm⁻² under alkaline conditions. Furthermore, the Pt/C | |Na-HE LDH electrode pair operates continuously for 2000 h at ~500 mA cm⁻² in an anion-exchange membrane electrolyzer (30 wt% KOH, 60 °C). In-situ spectroscopic and density functional theory calculations identify that the introduction of Na facilitates the formation of oxygen non-bonding band thereby mitigating structural instability. This study offers a strategy for designing efficient and stable lattice oxygen catalysts and provides valuable insights for developing catalysts capable of withstanding the rigorous demands of industrial hydrogen production environments.
Suggested Citation
Fangqing Wang & Liu Feng & Mingwei Zhang & Hailin Cong, 2025.
"Engineering oxygen nonbonding states in high entropy hydroxides for scalable water oxidation,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61766-2
DOI: 10.1038/s41467-025-61766-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61766-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.