IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4613-d846445.html
   My bibliography  Save this article

Renewable Energy Sources in the Processes of Thermal Modernization of Buildings—Selected Aspects in Poland

Author

Listed:
  • Daria Moskwa-Bęczkowska

    (Department of Economics and Finance, Faculty of Management and Computer Modelling, Kielce University of Technology, 25-314 Kielce, Poland)

  • Andrzej Moskwa

    (Independent Researcher, 27-400 Ostrowiec Świętokrzyski, Poland)

Abstract

The article presents selected aspects of the energy modernization process of a single-family building, carried out in accordance with the legal regulations of Poland. One of the elements of this process is the use of renewable energy sources in the selection of heat sources. Two variants of thermo-modernization solutions for the tested facility were generated using the CERTO and the Aterm computer program. One was a heat pump, and the second was hybrid, in which the heat pump is supplied with electricity from photovoltaic panels. The key point of considerations was to conduct a comparative analysis of the operating costs of applied solutions. All variants were based on the same output data including the same building materials from which the thermal modernization process was carried out. The only difference was in the use of different types of thermal energy sources. The aim of the article was, therefore, to carry out a comparative analysis of variants of heat sources used in a single-family residential building—heating in a traditional way and through the use of photovoltaic panels and a heat pump. The results of the analysis in the context of benefits obtained from using renewable energy sources for heating residential buildings are discussed. The analysis showed that the simultaneous application of a heat pump and solar collectors in the analyzed building effectively influenced the values of indicators of annual demand for usable, primary, and final energy. The main conclusion of this research is that the amount of final energy demand in the analyzed case decreased from 86.04 kWh/(m 2 /year) with natural gas to 40.46 kWh/(m 2 /year) with a heat pump and a solar collector.

Suggested Citation

  • Daria Moskwa-Bęczkowska & Andrzej Moskwa, 2022. "Renewable Energy Sources in the Processes of Thermal Modernization of Buildings—Selected Aspects in Poland," Energies, MDPI, vol. 15(13), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4613-:d:846445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lidia Gawlik & Eugeniusz Mokrzycki, 2019. "Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package," Energies, MDPI, vol. 12(17), pages 1-19, August.
    2. Shi, Guo-Hua & Aye, Lu & Li, Dan & Du, Xian-Jun, 2019. "Recent advances in direct expansion solar assisted heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 349-366.
    3. Kara, Ozer & Ulgen, Koray & Hepbasli, Arif, 2008. "Exergetic assessment of direct-expansion solar-assisted heat pump systems: Review and modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1383-1401, June.
    4. Peñaloza, Diego & Mata, Érika & Fransson, Nathalie & Fridén, Håkan & Samperio, Álvaro & Quijano, Ana & Cuneo, Alessandra, 2022. "Social and market acceptance of photovoltaic panels and heat pumps in Europe: A literature review and survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    6. Dongdong Song & Haitian Pei & Yuewen Liu & Haiyong Wei & Shengfu Yang & Shougeng Hu, 2022. "Review on Legislative System of Photovoltaic Industry Development in China," Energies, MDPI, vol. 15(1), pages 1-15, January.
    7. Bernard Zawada & Joanna Rucińska, 2021. "Optimization of Modernization of a Single-Family Building in Poland Including Thermal Comfort," Energies, MDPI, vol. 14(10), pages 1-21, May.
    8. Radosław Wolniak & Bożena Skotnicka-Zasadzień, 2022. "Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels," Energies, MDPI, vol. 15(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando del Ama Gonzalo & Belén Moreno Santamaría & Juan A. Hernández Ramos, 2022. "Assessment of Water Flow Glazing as Building-Integrated Solar Thermal Collector," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    2. Paweł Ziemba, 2023. "Selection of Photovoltaic Panels Based on Ranges of Criteria Weights and Balanced Assessment Criteria," Energies, MDPI, vol. 16(17), pages 1-18, September.
    3. Krzysztof Szczotka & Anna Barwińska-Małajowicz & Jakub Szymiczek & Radosław Pyrek, 2023. "Thermomodernization as a Mechanism for Improving Energy Efficiency and Reducing Emissions of Pollutants into the Atmosphere in a Public Utility Building," Energies, MDPI, vol. 16(13), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xiaohui & Guo, Zhonglian & Gao, Zhi & Yang, Bin & Ma, Xiuqin & Dong, Shengming, 2023. "Thermodynamic investigation of a direct-expansion solar assisted heat pump with evacuated tube collector-evaporator," Renewable Energy, Elsevier, vol. 206(C), pages 418-427.
    2. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    3. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    4. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    5. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    6. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    7. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    8. Henryk Łukowicz & Łukasz Bartela & Paweł Gładysz & Staffan Qvist, 2023. "Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology," Energies, MDPI, vol. 16(7), pages 1-25, March.
    9. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    10. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1, January.
    11. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    12. Abdulrasheed Zakari & Bahareh Oryani & Rafael Alvarado & Kadir Mumini, 2023. "Assessing the impact of green energy and finance on environmental performance in China and Japan," Economic Change and Restructuring, Springer, vol. 56(2), pages 1185-1199, April.
    13. Florian Gaman & Cristina Iacoboaea & Mihaela Aldea & Oana Luca & Adrian Andrei Stănescu & Carmen Mihaela Boteanu, 2022. "Energy Transition in Marginalized Urban Areas: The Case of Romania," Sustainability, MDPI, vol. 14(11), pages 1-22, June.
    14. Męczyński Michał & Ciesiółka Przemysław, 2022. "Regional Green Transition: Cases of Polish and Russian Regions," Quaestiones Geographicae, Sciendo, vol. 41(4), pages 165-177, December.
    15. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    16. Henrik Zsiborács & András Vincze & Gábor Pintér & Nóra Hegedűsné Baranyai, 2023. "A Comparative Examination of the Electricity Saving Potentials of Direct Residential PV Energy Use in European Countries," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    17. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    18. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.
    19. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    20. Domenico Curto & Vincenzo Franzitta & Andrea Guercio & Rosario Miceli & Claudio Nevoloso & Francesco Maria Raimondi & Marco Trapanese, 2022. "An Experimental Comparison between an Ironless and a Traditional Permanent Magnet Linear Generator for Wave Energy Conversion," Energies, MDPI, vol. 15(7), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4613-:d:846445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.