IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3568-d814752.html
   My bibliography  Save this article

Deep-Learning-Based Adaptive Model for Solar Forecasting Using Clustering

Author

Listed:
  • Sourav Malakar

    (A.K. Choudhury School of Information Technology, University of Calcutta, Kolkata 700073, India
    These authors contributed equally to this work.)

  • Saptarsi Goswami

    (Bangabasi Morning College, University of Calcutta, Kolkata 700073, India
    These authors contributed equally to this work.)

  • Bhaswati Ganguli

    (Department of Statistics, University of Calcutta, Kolkata 700073, India)

  • Amlan Chakrabarti

    (A.K. Choudhury School of Information Technology, University of Calcutta, Kolkata 700073, India)

  • Sugata Sen Roy

    (Department of Statistics, University of Calcutta, Kolkata 700073, India)

  • K. Boopathi

    (National Institute of Wind Energy (NIWE), The Ministry of New and Renewable Energy, Government of India, New Delhi 110003, India)

  • A. G. Rangaraj

    (National Institute of Wind Energy (NIWE), The Ministry of New and Renewable Energy, Government of India, New Delhi 110003, India)

Abstract

Accurate short-term solar forecasting is challenging due to weather uncertainties associated with cloud movements. Typically, a solar station comprises a single prediction model irrespective of time and cloud condition, which often results in suboptimal performance. In the proposed model, different categories of cloud movement are discovered using K-medoid clustering. To ensure broader variation in cloud movements, neighboring stations were also used that were selected using a dynamic time warping (DTW)-based similarity score. Next, cluster-specific models were constructed. At the prediction time, the current weather condition is first matched with the different weather groups found through clustering, and a cluster-specific model is subsequently chosen. As a result, multiple models are dynamically used for a particular day and solar station, which improves performance over a single site-specific model. The proposed model achieved 19.74% and 59% less normalized root mean square error (NRMSE) and mean rank compared to the benchmarks, respectively, and was validated for nine solar stations across two regions and three climatic zones of India.

Suggested Citation

  • Sourav Malakar & Saptarsi Goswami & Bhaswati Ganguli & Amlan Chakrabarti & Sugata Sen Roy & K. Boopathi & A. G. Rangaraj, 2022. "Deep-Learning-Based Adaptive Model for Solar Forecasting Using Clustering," Energies, MDPI, vol. 15(10), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3568-:d:814752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    2. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    3. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    4. Kumar, Ravinder & Umanand, L., 2005. "Estimation of global radiation using clearness index model for sizing photovoltaic system," Renewable Energy, Elsevier, vol. 30(15), pages 2221-2233.
    5. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    6. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    7. Akarslan, Emre & Hocaoglu, Fatih Onur, 2016. "A novel adaptive approach for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 87(P1), pages 628-633.
    8. Hamza Ali-Ou-Salah & Benyounes Oukarfi & Khalid Bahani & Mohammed Moujabbir, 2021. "A New Hybrid Model for Hourly Solar Radiation Forecasting Using Daily Classification Technique and Machine Learning Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, March.
    9. McCandless, T.C. & Haupt, S.E. & Young, G.S., 2016. "A regime-dependent artificial neural network technique for short-range solar irradiance forecasting," Renewable Energy, Elsevier, vol. 89(C), pages 351-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Chang Tsai & Chia-Sheng Tu & Chih-Ming Hong & Whei-Min Lin, 2023. "A Review of State-of-the-Art and Short-Term Forecasting Models for Solar PV Power Generation," Energies, MDPI, vol. 16(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haider, Syed Altan & Sajid, Muhammad & Sajid, Hassan & Uddin, Emad & Ayaz, Yasar, 2022. "Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad," Renewable Energy, Elsevier, vol. 198(C), pages 51-60.
    2. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    3. Zheng, Jianqin & Zhang, Haoran & Dai, Yuanhao & Wang, Bohong & Zheng, Taicheng & Liao, Qi & Liang, Yongtu & Zhang, Fengwei & Song, Xuan, 2020. "Time series prediction for output of multi-region solar power plants," Applied Energy, Elsevier, vol. 257(C).
    4. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    5. Tyler McCandless & Susan Dettling & Sue Ellen Haupt, 2020. "Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction," Energies, MDPI, vol. 13(3), pages 1-14, February.
    6. Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
    7. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    8. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
    10. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    11. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    12. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    13. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    14. Mehmood, Faiza & Ghani, Muhammad Usman & Asim, Muhammad Nabeel & Shahzadi, Rehab & Mehmood, Aamir & Mahmood, Waqar, 2021. "MPF-Net: A computational multi-regional solar power forecasting framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Ghadah Alkhayat & Syed Hamid Hasan & Rashid Mehmood, 2022. "SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar Energy Forecasting," Energies, MDPI, vol. 15(18), pages 1-55, September.
    16. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    17. N. Yogambal Jayalakshmi & R. Shankar & Umashankar Subramaniam & I. Baranilingesan & Alagar Karthick & Balasubramaniam Stalin & Robbi Rahim & Aritra Ghosh, 2021. "Novel Multi-Time Scale Deep Learning Algorithm for Solar Irradiance Forecasting," Energies, MDPI, vol. 14(9), pages 1-23, April.
    18. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    19. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    20. Gürtürk, Mert, 2019. "Economic feasibility of solar power plants based on PV module with levelized cost analysis," Energy, Elsevier, vol. 171(C), pages 866-878.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3568-:d:814752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.