IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3533-d813642.html
   My bibliography  Save this article

Thermodynamic Study of Solar-Assisted Hybrid Cooling Systems with Consideration of Duration in Heat-Driven Processes

Author

Listed:
  • Zeyu Peng

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Guangdong Province Key Laboratory of High Efficient and Clean Energy Utilization, South China University of Technology, Guangzhou 510640, China
    Guangdong Province Engineering Research Center of High Efficient and Low Pollution Energy Conversion, Guangzhou 510640, China)

  • Zeyu Li

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Guangdong Province Key Laboratory of High Efficient and Clean Energy Utilization, South China University of Technology, Guangzhou 510640, China
    Guangdong Province Engineering Research Center of High Efficient and Low Pollution Energy Conversion, Guangzhou 510640, China)

  • Junquan Zeng

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Guangdong Province Key Laboratory of High Efficient and Clean Energy Utilization, South China University of Technology, Guangzhou 510640, China
    Guangdong Province Engineering Research Center of High Efficient and Low Pollution Energy Conversion, Guangzhou 510640, China)

  • Jianting Yu

    (Shenzhen Engineering Research Centre for Gas Distribution and Efficient Utilization, Shenzhen Gas Corporation Ltd., Shenzhen 518049, China)

Abstract

Solar-assisted hybrid cooling systems are promising for the energy saving of refrigeration systems. In most cases, the solar thermal gain is only able to power the heat-driven process of facilities during part of the working period. Therefore, the reduction of compressor power strongly depends upon the duration of heat-driven processes, which has not been addressed properly. Motivated by such a knowledge gap, the thermodynamic understanding of solar-assisted hybrid cooling systems is deepened through considering the duration in heat-driven processes. Three absorption–compression-integrated cooling cycles were taken as examples. It was found that optimal parameters, e.g., inter-stage pressure and temperature, corresponding to various performance indicators tend to be identical, as the duration of heat-driven processes is taken into account. Furthermore, the optimal parameter for different working conditions was obtained. The dimensionless optimal intermediate temperature of layout with the cascade condensation process varies slightly, e.g., 4%, for different conditions. Moreover, the fall of compressor power in the entire working period was nearly independent upon the intermediate temperature. The paper is favorable for the efficient design and operation of solar-assisted hybrid cooling systems.

Suggested Citation

  • Zeyu Peng & Zeyu Li & Junquan Zeng & Jianting Yu, 2022. "Thermodynamic Study of Solar-Assisted Hybrid Cooling Systems with Consideration of Duration in Heat-Driven Processes," Energies, MDPI, vol. 15(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3533-:d:813642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madjid Soltani & Alireza Dehghani-Sanij & Ahmad Sayadnia & Farshad M. Kashkooli & Kobra Gharali & SeyedBijan Mahbaz & Maurice B. Dusseault, 2018. "Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface," Energies, MDPI, vol. 11(5), pages 1-23, April.
    2. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    3. Jain, Vaibhav & Sachdeva, Gulshan & Kachhwaha, S.S., 2015. "Thermodynamic modelling and parametric study of a low temperature vapour compression-absorption system based on modified Gouy-Stodola equation," Energy, Elsevier, vol. 79(C), pages 407-418.
    4. Meng, Xuelin & Zheng, Danxing & Wang, Jianzhao & Li, Xinru, 2013. "Energy saving mechanism analysis of the absorption–compression hybrid refrigeration cycle," Renewable Energy, Elsevier, vol. 57(C), pages 43-50.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
    2. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
    3. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    4. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    5. He, Yijian & Jiang, Yunyun & Fan, Yuchen & Chen, Guangming & Tang, Liming, 2020. "Utilization of ultra-low temperature heat by a novel cascade refrigeration system with environmentally-friendly refrigerants," Renewable Energy, Elsevier, vol. 157(C), pages 204-213.
    6. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    7. Grzegorz Czerwiński & Jerzy Wołoszyn, 2021. "Optimization of Air Cooling System Using Adjoint Solver Technique," Energies, MDPI, vol. 14(13), pages 1-24, June.
    8. Ayou, Dereje S. & Bruno, Joan Carles & Coronas, Alberto, 2017. "Integration of a mechanical and thermal compressor booster in combined absorption power and refrigeration cycles," Energy, Elsevier, vol. 135(C), pages 327-341.
    9. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    10. Margherita Ferrucci & Fabio Peron, 2018. "Ancient Use of Natural Geothermal Resources: Analysis of Natural Cooling of 16th Century Villas in Costozza (Italy) as a Reference for Modern Buildings," Sustainability, MDPI, vol. 10(12), pages 1-20, November.
    11. Xuan Tao & Dhinesh Thanganadar & Kumar Patchigolla, 2022. "Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance," Energies, MDPI, vol. 15(18), pages 1-28, September.
    12. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Gong, Sunyoung & Goni Boulama, Kiari, 2014. "Parametric study of an absorption refrigeration machine using advanced exergy analysis," Energy, Elsevier, vol. 76(C), pages 453-467.
    15. Hasan Alimoradi & Madjid Soltani & Pooriya Shahali & Farshad Moradi Kashkooli & Razieh Larizadeh & Kaamran Raahemifar & Mohammad Adibi & Behzad Ghasemi, 2020. "Experimental Investigation on Improvement of Wet Cooling Tower Efficiency with Diverse Packing Compaction Using ANN-PSO Algorithm," Energies, MDPI, vol. 14(1), pages 1-19, December.
    16. Jia, Teng & Dou, Pengbo & Chen, Erjian & Dai, Yanjun, 2022. "Feasibility and performance analysis of a hybrid GAX-based absorption-compression heat pump system for space heating in extremely cold climate conditions," Energy, Elsevier, vol. 242(C).
    17. Zhang, Xiao & Cai, Liang & Chen, Tao & Qiao, Jingyi & Zhang, Xiaosong, 2021. "Vapor-liquid equilibrium measurements and assessments of Low-GWP absorption working pairs (R32+DMETEG, R152a+DMETEG, and R161+DMETEG) for absorption refrigeration systems," Energy, Elsevier, vol. 224(C).
    18. Xu, Qingyu & Lu, Ding & Chen, Gaofei & Guo, Hao & Dong, Xueqiang & Zhao, Yanxing & Shen, Jun & Gong, Maoqiong, 2019. "Experimental study on an absorption refrigeration system driven by temperature-distributed heat sources," Energy, Elsevier, vol. 170(C), pages 471-479.
    19. Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
    20. Hu, Zheng & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Experimental study of the absorption refrigeration using ocean thermal energy and its under-lying prospects," Renewable Energy, Elsevier, vol. 213(C), pages 47-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3533-:d:813642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.