IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p94-d709764.html
   My bibliography  Save this article

Developing Novel Technologies and Services for Intelligent Low Voltage Electricity Grids: Cost–Benefit Analysis and Policy Implications

Author

Listed:
  • Alemu Moges Belay

    (Smart Innovation Norway, Håkon Melbergs vei 16, 1783 Halden, Norway)

  • Sanket Puranik

    (Smart Innovation Norway, Håkon Melbergs vei 16, 1783 Halden, Norway)

  • Ramon Gallart-Fernández

    (Estabanell Energia, C. del Rec, 28, 08401 Granollers, Spain)

  • Heidi Tuiskula

    (Smart Innovation Norway, Håkon Melbergs vei 16, 1783 Halden, Norway)

  • Joaquim Melendez

    (Institut d’Informàtica i Aplicacions, University of Girona, Campus Montilivi, 17003 Girona, Spain)

  • Ilias Lamprinos

    (Intracom S.A. Telecom Solutions, 19.7 km Markopoulou Ave., GR-19002 Peania Athens, Greece)

  • Francisco Díaz-González

    (Centre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Department of Electrical Engineering, Universitat Politecnica de Catalunya ETS d’Enginyeria Industrial de Barcelona, C. Avinguda Diagonal, 647, Pl. 2, 08028 Barcelona, Spain)

  • Miha Smolnikar

    (ComSensus d.o.o., Brezje pri Dobu 8a, SI-1233 Dob, Slovenia
    Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia)

Abstract

The paper presents a set of prototype smart grid technologies and services and validates the economic viability of the proposed solution using cost–benefit analysis (CBA). The study considered the EU-funded project called RESOLVD and implemented the technologies and services in a real-life pilot. The paper focuses on the analysis of technological solutions which enhance the operational efficiency and the hosting capacity of low-voltage electricity distribution grids. The solutions provided better integration of a hybrid battery storage system, with the grid interfacing power electronics, smart gateways for the interconnection of assets at the grid edge, and sensors enhancing infrastructure observability and control. The result from the CBA indicates the economic viability of the project, high scalability, and replicability. The economic benefits were realized with the breakeven value of eight secondary substations (SS) and 16 feeders. The scenario test on the DSO’s willingness to pay for the software as a service (SaaS) revealed that the payback period can further be reduced by almost half with a higher internal rate of return (IRR) and net present value (NPV). Both the CBA and scenario tests showed RESOLVD solution can become more economically viable when deployed in largescale. Moreover, the CBA results provide evidence to the energy policy by allowing DSOs to consider both CAPEX and OPEX for better investment decisions. Further, the paper proposes an alternative business approach that shifts from grid reinforcement to service provision. The paper also discusses the research implications on energy policy and business.

Suggested Citation

  • Alemu Moges Belay & Sanket Puranik & Ramon Gallart-Fernández & Heidi Tuiskula & Joaquim Melendez & Ilias Lamprinos & Francisco Díaz-González & Miha Smolnikar, 2021. "Developing Novel Technologies and Services for Intelligent Low Voltage Electricity Grids: Cost–Benefit Analysis and Policy Implications," Energies, MDPI, vol. 15(1), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:94-:d:709764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/94/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/94/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cambini, Carlo & Meletiou, Alexis & Bompard, Ettore & Masera, Marcelo, 2016. "Market and regulatory factors influencing smart-grid investment in Europe: Evidence from pilot projects and implications for reform," Utilities Policy, Elsevier, vol. 40(C), pages 36-47.
    2. Obi, Manasseh & Bass, Robert, 2016. "Trends and challenges of grid-connected photovoltaic systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1082-1094.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    2. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    3. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    4. Cambini, Carlo & Soroush, Golnoush, 2019. "Designing grid tariffs in the presence of distributed generation," Utilities Policy, Elsevier, vol. 61(C).
    5. Guillermo Almonacid-Olleros & Gabino Almonacid & David Gil & Javier Medina-Quero, 2022. "Evaluation of Transfer Learning and Fine-Tuning to Nowcast Energy Generation of Photovoltaic Systems in Different Climates," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    6. Marques, Vítor & Costa, Paulo Moisés & Bento, Nuno, 2022. "Greater than the sum: On regulating innovation in electricity distribution networks with externalities," Utilities Policy, Elsevier, vol. 79(C).
    7. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    8. Silverman, Rochelle E. & Flores, Robert J. & Brouwer, Jack, 2020. "Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community," Applied Energy, Elsevier, vol. 280(C).
    9. Yuzhe Chen & Feng Wu & Linjun Shi & Yang Li & Peng Qi & Xu Guo, 2024. "Identification of Sub-Synchronous Oscillation Mode Based on HO-VMD and SVD-Regularized TLS-Prony Methods," Energies, MDPI, vol. 17(20), pages 1-17, October.
    10. Wang, Yongli & Zhou, Minhan & Zhang, Fuli & Zhang, Yuli & Ma, Yuze & Dong, Huanran & Zhang, Danyang & Liu, Lin, 2021. "Chinese grid investment based on transmission and distribution tariff policy: An optimal coordination between capacity and demand," Energy, Elsevier, vol. 219(C).
    11. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    12. Di Foggia, Giacomo & Beccarello, Massimo, 2018. "Improving efficiency in the MSW collection and disposal service combining price cap and yardstick regulation: The Italian case," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 79, pages 223-231.
    13. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Mather, Peter, 2017. "Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system," Energy, Elsevier, vol. 140(P1), pages 276-290.
    14. Meletiou, Alexis & Cambini, Carlo & Masera, Marcelo, 2018. "Regulatory and ownership determinants of unbundling regime choice for European electricity transmission utilities," Utilities Policy, Elsevier, vol. 50(C), pages 13-25.
    15. Muttqi, Kashem M. & Aghaei, Jamshid & Askarpour, Mohammad & Ganapathy, Velappa, 2017. "Minimizing the steady-state impediments to solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1329-1345.
    16. Shahnazari, Mahdi & Bahri, Parisa A. & Parlevliet, David & Minakshi, Manickam & Moheimani, Navid R., 2017. "Sustainable conversion of light to algal biomass and electricity: A net energy return analysis," Energy, Elsevier, vol. 131(C), pages 218-229.
    17. Cansino, José M. & Román, Rocío & Colinet, María J., 2018. "Two smart energy management models for the Spanish electricity system," Utilities Policy, Elsevier, vol. 50(C), pages 60-72.
    18. Castellini, Marta & Menoncin, Francesco & Moretto, Michele & Vergalli, Sergio, 2021. "Photovoltaic Smart Grids in the prosumers investment decisions: a real option model," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    19. Gaspari, Michele & Lorenzoni, Arturo, 2018. "The governance for distributed energy resources in the Italian electricity market: A driver for innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3623-3632.
    20. Vargas Gil, Gloria Milena & Bittencourt Aguiar Cunha, Rafael & Giuseppe Di Santo, Silvio & Machado Monaro, Renato & Fragoso Costa, Fabiano & Sguarezi Filho, Alfeu J., 2020. "Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems," Renewable Energy, Elsevier, vol. 162(C), pages 1307-1320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:94-:d:709764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.