IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p230-d714197.html
   My bibliography  Save this article

The Potential of Harnessing Real-Time Occupancy Data for Improving Energy Performance of Activity-Based Workplaces

Author

Listed:
  • Arianna Brambilla

    (Sydney School of Architecture, Design and Planning, The University of Sydney, Sydney 2006, Australia)

  • Christhina Candido

    (Faculty of Architecture, Building and Planning, Melbourne School of Design, The University of Melbourne, Melbourne 3010, Australia)

  • Isuru Hettiarachchi

    (Sydney School of Architecture, Design and Planning, The University of Sydney, Sydney 2006, Australia)

  • Leena Thomas

    (School of Architecture, University of Technology Sydney, Sydney 2007, Australia)

  • Ozgur Gocer

    (Sydney School of Architecture, Design and Planning, The University of Sydney, Sydney 2006, Australia)

  • Kenan Gocer

    (Sydney School of Architecture, Design and Planning, The University of Sydney, Sydney 2006, Australia)

  • Martin Mackey

    (Faculty of Health Sciences, The University of Sydney, Sydney 2006, Australia)

  • Nimish Biloria

    (School of Architecture, University of Technology Sydney, Sydney 2007, Australia)

  • Tooran Alizadeh

    (Sydney School of Architecture, Design and Planning, The University of Sydney, Sydney 2006, Australia)

  • Somwrita Sarkar

    (Sydney School of Architecture, Design and Planning, The University of Sydney, Sydney 2006, Australia)

Abstract

Currently, the available studies on the prediction of building energy performance and real occupancy data are typically characterized by aggregated and averaged occupancy patterns or large thermal zones of reference. Despite the increasing diffusion of smart energy management systems and the growing availability of longitudinal data regarding occupancy, these two domains rarely inform each other. This research aims at understanding the potential of employing real-time occupancy data to identify better cooling strategies for activity-based-working (ABW)-supportive offices and reduce the overall energy consumption. It presents a case study comparing the energy performance of the office when different resolutions of occupancy and thermal zoning are applied, ranging from the standard energy certification approach to real-time occupancy patterns. For the first time, one year of real-time occupancy data at the desk resolution, captured through computer logs and Bluetooth devices, is used to investigate this issue. Results show that the actual cooling demand is 9% lower than predicted, unveiling the energy-saving potential to be achieved from HVAC systems for non-assigned seating environments. This research demonstrates that harnessing real-time occupancy data for demand-supply cooling management at a fine-grid resolution is an efficient strategy to reduce cooling consumption and increase workers’ comfort. It also emphasizes the need for more data and monitoring campaigns for the definition of more accurate and robust energy management strategies.

Suggested Citation

  • Arianna Brambilla & Christhina Candido & Isuru Hettiarachchi & Leena Thomas & Ozgur Gocer & Kenan Gocer & Martin Mackey & Nimish Biloria & Tooran Alizadeh & Somwrita Sarkar, 2021. "The Potential of Harnessing Real-Time Occupancy Data for Improving Energy Performance of Activity-Based Workplaces," Energies, MDPI, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:230-:d:714197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    2. Piselli, Cristina & Pisello, Anna Laura, 2019. "Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance," Energy, Elsevier, vol. 176(C), pages 667-681.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    2. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & Cabeza, Luisa F. & Payá, Jorge & Marchante-Avellaneda, Javier & de Gracia, Alvaro, 2022. "Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control," Energy, Elsevier, vol. 239(PC).
    3. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    4. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    5. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Estimation and Validation of Energy Consumption in UK Existing Hotel Building Using Dynamic Simulation Software," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    6. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    7. Zulay Giménez & Claudio Mourgues & Luis F. Alarcón & Harrison Mesa & Eugenio Pellicer, 2020. "Value Analysis Model to Support the Building Design Process," Sustainability, MDPI, vol. 12(10), pages 1-24, May.
    8. Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.
    9. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    10. Ljubomir Jankovic, 2016. "Reducing Simulation Performance Gap in Hemp-Lime Buildings Using Fourier Filtering †," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    11. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    12. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    13. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2019. "Energy productivity analysis framework for buildings: a case study of GCC region," Energy, Elsevier, vol. 167(C), pages 1251-1265.
    14. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    15. Domenico Curto & Vincenzo Franzitta & Andrea Guercio & Domenico Panno, 2021. "Energy Retrofit. A Case Study—Santi Romano Dormitory on the Palermo University," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
    16. Xing Shi & Binghui Si & Jiangshan Zhao & Zhichao Tian & Chao Wang & Xing Jin & Xin Zhou, 2019. "Magnitude, Causes, and Solutions of the Performance Gap of Buildings: A Review," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    17. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
    18. Sooyoun Cho & Jeehang Lee & Jumi Baek & Gi-Seok Kim & Seung-Bok Leigh, 2019. "Investigating Primary Factors Affecting Electricity Consumption in Non-Residential Buildings Using a Data-Driven Approach," Energies, MDPI, vol. 12(21), pages 1-23, October.
    19. Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
    20. Hamburg, Anti & Kuusk, Kalle & Mikola, Alo & Kalamees, Targo, 2020. "Realisation of energy performance targets of an old apartment building renovated to nZEB," Energy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:230-:d:714197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.