IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p118-d710481.html
   My bibliography  Save this article

Reliability Evaluation of Cyber–Physical Power Systems Considering Supply- and Demand-Side Uncertainties

Author

Listed:
  • Lei Chen

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)

  • Nan Zhao

    (College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Zihao Cheng

    (School of Information Technology, Henan University of Chinese Medicine, Zhengzhou 450046, China)

  • Wen Gu

    (School of Wisdom Education, Jiangsu Normal University, Xuzhou 221116, China)

Abstract

To reach effective monitoring and control, a physical power grid couples with a communication network and evolves into cyber–physical power systems (CPPS), but this cyber–physical interdependence may exacerbate failure on the physical/cyber side and may turn into a cascading failure. Furthermore, distributed generators (DGs) and plug-in hybrid electric vehicles (PHEVs) introduced into CPPS add uncertainties to both the supply side and demand side of power energy. In this paper, we detail the model of CPPS and its coupling mechanism in operation and discuss the propagation mechanism of cascading failure within and across a physical power grid and a communication network. For uncertainties of power energy in the supply and demand sides, the generation and load of each day are divided into 24 time segments for modeling. In the case study, the well-being criteria and reliability indexes are employed to analyze the effect of DGs and cyber–physical interdependence on the reliability of CPPS when DGs suffer aging failure and cyber attacks, and the simulations indicate that introducing DGs can effectively enhance the period of healthy and marginal states. Furthermore, cyber attacks can sharply destroy the CPPS compared with aging failure.

Suggested Citation

  • Lei Chen & Nan Zhao & Zihao Cheng & Wen Gu, 2021. "Reliability Evaluation of Cyber–Physical Power Systems Considering Supply- and Demand-Side Uncertainties," Energies, MDPI, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:118-:d:710481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    2. V. Rosato & L. Issacharoff & F. Tiriticco & S. Meloni & S. De Porcellinis & R. Setola, 2008. "Modelling interdependent infrastructures using interacting dynamical models," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 63-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    2. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Liang, Yuan & Qi, Mingze & Huangpeng, Qizi & Duan, Xiaojun, 2023. "Percolation of interlayer feature-correlated multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    5. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    6. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    7. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Zheng, Kexian & Liu, Ying & Gong, Jie & Wang, Wei, 2022. "Robustness of circularly interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    10. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    11. Banerjee, Joydeep & Basu, Kaustav & Sen, Arunabha, 2018. "On hardening problems in critical infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 49-67.
    12. Pei, Jianxin & Liu, Ying & Wang, Wei & Gong, Jie, 2021. "Cascading failures in multiplex network under flow redistribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    13. Lee, Joohyun & Kwak, Jaewook & Lee, Hyang-Won & Shroff, Ness B., 2018. "Finding minimum node separators: A Markov chain Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 225-235.
    14. Ahmed Ali A. Mohamed, 2019. "On the Rising Interdependency between the Power Grid, ICT Network, and E-Mobility: Modeling and Analysis," Energies, MDPI, vol. 12(10), pages 1-17, May.
    15. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    16. Al-Takrouri, Saleh & Savkin, Andrey V., 2013. "A decentralized flow redistribution algorithm for avoiding cascaded failures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6135-6145.
    17. Gao, Yanli & Liang, Chongsheng & Zhou, Jie & Chen, Shiming, 2023. "Robustness optimization of aviation-high-speed rail coupling network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    18. Xu, Luo & Guo, Qinglai & Sheng, Yujie & Muyeen, S.M. & Sun, Hongbin, 2021. "On the resilience of modern power systems: A comprehensive review from the cyber-physical perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Qu, Junyi & Liu, Ying & Tang, Ming & Guan, Shuguang, 2022. "Identification of the most influential stocks in financial networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Wang, Shuliang & Hong, Liu & Chen, Xueguang, 2012. "Vulnerability analysis of interdependent infrastructure systems: A methodological framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3323-3335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:118-:d:710481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.