IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2497-d544600.html
   My bibliography  Save this article

Validation Process for Rooftop Wind Regime CFD Model in Complex Urban Environment Using an Experimental Measurement Campaign

Author

Listed:
  • Sarah Jamal Mattar

    (Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Mohammad Reza Kavian Nezhad

    (Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Michael Versteege

    (Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Carlos F. Lange

    (Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Brian A. Fleck

    (Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

Abstract

This research presents a validation methodology for computational fluid dynamics (CFD) assessments of rooftop wind regime in urban environments. A case study is carried out at the Donadeo Innovation Centre for Engineering building at the University of Alberta campus. A numerical assessment of rooftop wind regime around buildings of the University of Alberta North campus has been performed by using 3D steady Reynolds-averaged Navier–Stokes equations, on a large-scale high-resolution grid using the ANSYS CFX code. Two methods of standard deviation (SDM) and average (AM) were introduced to compare the numerical results with the corresponding measurements. The standard deviation method showed slightly better agreements between the numerical results and measurements compared to the average method, by showing the average wind speed errors of 10.8% and 17.7%, and wind direction deviation of 8.4° and 12.3°, for incident winds from East and South, respectively. However, the average error between simulated and measured wind speeds of the North and West incidents were 51.2% and 24.6%, respectively. Considering the fact that the upstream geometry was not modeled in detail for the North and West directions, the validation methodology presented in this paper is deemed as acceptable, as good agreement between the numerical and experimental results of East and South incidents were achieved.

Suggested Citation

  • Sarah Jamal Mattar & Mohammad Reza Kavian Nezhad & Michael Versteege & Carlos F. Lange & Brian A. Fleck, 2021. "Validation Process for Rooftop Wind Regime CFD Model in Complex Urban Environment Using an Experimental Measurement Campaign," Energies, MDPI, vol. 14(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2497-:d:544600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Qiang & Wang, Jianwen & Hou, Yali & Yuan, Renyu & Luo, Kun & Fan, Jianren, 2018. "Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements," Renewable Energy, Elsevier, vol. 115(C), pages 1118-1133.
    2. Tabrizi, Amir Bashirzadeh & Whale, Jonathan & Lyons, Thomas & Urmee, Tania, 2014. "Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions," Renewable Energy, Elsevier, vol. 67(C), pages 242-251.
    3. Dhunny, A.Z. & Lollchund, M.R. & Rughooputh, S.D.D.V., 2017. "Wind energy evaluation for a highly complex terrain using Computational Fluid Dynamics (CFD)," Renewable Energy, Elsevier, vol. 101(C), pages 1-9.
    4. Tang, Xiao-Yu & Zhao, Shumian & Fan, Bo & Peinke, Joachim & Stoevesandt, Bernhard, 2019. "Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts," Applied Energy, Elsevier, vol. 238(C), pages 806-815.
    5. Tabrizi, Amir Bashirzadeh & Whale, Jonathan & Lyons, Thomas & Urmee, Tania, 2015. "Rooftop wind monitoring campaigns for small wind turbine applications: Effect of sampling rate and averaging period," Renewable Energy, Elsevier, vol. 77(C), pages 320-330.
    6. Simões, Teresa & Estanqueiro, Ana, 2016. "A new methodology for urban wind resource assessment," Renewable Energy, Elsevier, vol. 89(C), pages 598-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Reza Kavian Nezhad & Khashayar RahnamayBahambary & Carlos F. Lange & Brian A. Fleck, 2023. "Modified Accuracy of RANS Modeling of Urban Pollutant Flow within Generic Building Clusters Using a High-Quality Full-Scale Dispersion Dataset," Sustainability, MDPI, vol. 15(19), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    2. Takanori Uchida & Yasushi Kawashima, 2019. "New Assessment Scales for Evaluating the Degree of Risk of Wind Turbine Blade Damage Caused by Terrain-Induced Turbulence," Energies, MDPI, vol. 12(13), pages 1-27, July.
    3. Juan, Yu-Hsuan & Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert & Wen, Chih-Yung & Yang, An-Shik, 2022. "CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height," Applied Energy, Elsevier, vol. 321(C).
    4. Arteaga-López, Ernesto & Angeles-Camacho, César, 2021. "Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines," Energy, Elsevier, vol. 220(C).
    5. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    6. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    7. Yang, Lin & Rojas, Jose I. & Montlaur, Adeline, 2020. "Advanced methodology for wind resource assessment near hydroelectric dams in complex mountainous areas," Energy, Elsevier, vol. 190(C).
    8. Takanori Uchida & Kenichiro Sugitani, 2020. "Numerical and Experimental Study of Topographic Speed-Up Effects in Complex Terrain," Energies, MDPI, vol. 13(15), pages 1-38, July.
    9. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Xu, Wenhao & Li, Ye & Li, Gaohua & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings," Renewable Energy, Elsevier, vol. 176(C), pages 25-39.
    11. Li, Gang & Li, Yidian & Li, Jia & Huang, Huilan & Huang, Liyan, 2023. "Research on dynamic characteristics of vertical axis wind turbine extended to the outside of buildings," Energy, Elsevier, vol. 272(C).
    12. Yan, Bowen & Shen, Ruifang & Li, Ke & Wang, Zhenguo & Yang, Qingshan & Zhou, Xuhong & Zhang, Le, 2023. "Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations," Energy, Elsevier, vol. 284(C).
    13. Yang, Xiaolei & Milliren, Christopher & Kistner, Matt & Hogg, Christopher & Marr, Jeff & Shen, Lian & Sotiropoulos, Fotis, 2021. "High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm," Applied Energy, Elsevier, vol. 281(C).
    14. Takanori Uchida, 2019. "Numerical Investigation of Terrain-Induced Turbulence in Complex Terrain Using High-Resolution Elevation Data and Surface Roughness Data Constructed with a Drone," Energies, MDPI, vol. 12(19), pages 1-20, October.
    15. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    16. Yuan Song & Insu Paek, 2020. "Prediction and Validation of the Annual Energy Production of a Wind Turbine Using WindSim and a Dynamic Wind Turbine Model," Energies, MDPI, vol. 13(24), pages 1-15, December.
    17. Shaohui Li & Xuejin Sun & Riwei Zhang & Chuanliang Zhang, 2019. "A Feasibility Study of Simulating the Micro-Scale Wind Field for Wind Energy Applications by NWP/CFD Model with Improved Coupling Method and Data Assimilation," Energies, MDPI, vol. 12(13), pages 1-19, July.
    18. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    19. Tran, Thomas T.D. & Smith, Amanda D., 2017. "fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1372-1388.
    20. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2497-:d:544600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.