IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2145-d534543.html
   My bibliography  Save this article

Evaporated MAPbI 3 Perovskite Planar Solar Cells with Different Annealing Temperature

Author

Listed:
  • Yi-Tsung Chang

    (Department of Physics, School of Science, Jimei University, Xiamen 361021, China)

  • Ching-Ho Tien

    (Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Kun-Yi Lee

    (Department of Electrical Engineering, China University of Science and Technology, Taipei 11581, Taiwan)

  • Yu-Shen Tung

    (Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Lung-Chien Chen

    (Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

The power conversion efficiency (PCE) of an Ag/spiro-OMeTAD/CH 3 NH 3 PbI 3 (MAPbI 3 )/PCBM/mesoporous TiO 2 /compact TiO 2 /FTO planar solar cell with different annealing temperatures of PbI 2 and MAPbI 3 films was investigated in this study. The morphology control of a MAPbI 3 thin film plays key roles in high-efficiency perovskite solar cells. The PbI 2 films were prepared by using thermal vacuum evaporation technology, and the MAPbI 3 perovskite films were synthesized with two-step synthesis. The X-ray spectra and surface morphologies of the PbI 2 and MAPbI 3 films were examined at annealing temperatures of 80, 100, 120, and 140 °C for 10 min. The performance of the perovskite planar solar cell at an annealing temperature of 100 °C for 10 min was demonstrated. The power conversion efficiency (PCE) was about 8.66%, the open-circuit voltage (V oc ) was 0.965 V, the short-circuit current (J sc ) was 13.6 mA/cm 2 , and the fill factor (FF) was 0.66 by scanning the density–voltage (J–V) curve.

Suggested Citation

  • Yi-Tsung Chang & Ching-Ho Tien & Kun-Yi Lee & Yu-Shen Tung & Lung-Chien Chen, 2021. "Evaporated MAPbI 3 Perovskite Planar Solar Cells with Different Annealing Temperature," Energies, MDPI, vol. 14(8), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2145-:d:534543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jason J. Yoo & Gabkyung Seo & Matthew R. Chua & Tae Gwan Park & Yongli Lu & Fabian Rotermund & Young-Ki Kim & Chan Su Moon & Nam Joong Jeon & Juan-Pablo Correa-Baena & Vladimir Bulović & Seong Sik Shi, 2021. "Efficient perovskite solar cells via improved carrier management," Nature, Nature, vol. 590(7847), pages 587-593, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    2. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Zaheen Uddin & Junhui Ran & Elias Stathatos & Bin Yang, 2023. "Improving Thermal Stability of Perovskite Solar Cells by Thermoplastic Additive Engineering," Energies, MDPI, vol. 16(9), pages 1-12, April.
    4. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    5. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    6. Xuemei Li & Wengang Huang & Andraž Krajnc & Yuwei Yang & Atul Shukla & Jaeho Lee & Mehri Ghasemi & Isaac Martens & Bun Chan & Dominique Appadoo & Peng Chen & Xiaoming Wen & Julian A. Steele & Haira G., 2023. "Interfacial alloying between lead halide perovskite crystals and hybrid glasses," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Benjamin Liu & Zihan Jia & Zhiliang Chen, 2024. "A Direct Chemical Approach to Mitigate Environment Lead Contamination in Perovskite Solar Cells," Energies, MDPI, vol. 17(7), pages 1-14, March.
    8. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    10. Jiyeon Hyun & Kyung Mun Yeom & Ha Eun Lee & Donghwan Kim & Hae-Seok Lee & Jun Hong Noh & Yoonmook Kang, 2021. "Efficient n-i-p Monolithic Perovskite/Silicon Tandem Solar Cells with Tin Oxide via a Chemical Bath Deposition Method," Energies, MDPI, vol. 14(22), pages 1-10, November.
    11. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    12. Yu, Jin & Dong, Xiaohan & Song, Yurun & Zhang, Yangguang & Zhang, Huasen & Yang, Xianshen & Xu, Zhongjie & Liu, Yupeng, 2022. "Energy efficiency optimization of a compound coupled hydro-mechanical transmission for heavy-duty vehicles," Energy, Elsevier, vol. 252(C).
    13. Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
    14. Qian Yu & Rui Tao & Shan Jiang, 2023. "Exploring the evolution of interdisciplinary citation network by the colored network motifs: the case of Perovskite Materials," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4421-4446, August.
    15. Zhonghui Zhu & Matyas Daboczi & Minzhi Chen & Yimin Xuan & Xianglei Liu & Salvador Eslava, 2024. "Ultrastable halide perovskite CsPbBr3 photoanodes achieved with electrocatalytic glassy-carbon and boron-doped diamond sheets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Austin M. K. Fehr & Ayush Agrawal & Faiz Mandani & Christian L. Conrad & Qi Jiang & So Yeon Park & Olivia Alley & Bor Li & Siraj Sidhik & Isaac Metcalf & Christopher Botello & James L. Young & Jacky E, 2023. "Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Tian Chen & Jiangsheng Xie & Bin Wen & Qixin Yin & Ruohao Lin & Shengcai Zhu & Pingqi Gao, 2023. "Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Cheng Liu & Yi Yang & Kasparas Rakstys & Arup Mahata & Marius Franckevicius & Edoardo Mosconi & Raminta Skackauskaite & Bin Ding & Keith G. Brooks & Onovbaramwen Jennifer Usiobo & Jean-Nicolas Audinot, 2021. "Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Kaikai Liu & Yujie Luo & Yongbin Jin & Tianxiao Liu & Yuming Liang & Liu Yang & Peiquan Song & Zhiyong Liu & Chengbo Tian & Liqiang Xie & Zhanhua Wei, 2022. "Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Yue Wang & Senyun Ye & Jia Wei Melvin Lim & David Giovanni & Minjun Feng & Jianhui Fu & Harish N S Krishnamoorthy & Qiannan Zhang & Qiang Xu & Rui Cai & Tze Chien Sum, 2023. "Carrier multiplication in perovskite solar cells with internal quantum efficiency exceeding 100%," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2145-:d:534543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.