IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016579.html
   My bibliography  Save this article

High-performance piezoelectric energy harvesting system with anti-interference capability for smart grid monitoring

Author

Listed:
  • Gu, Shanghao
  • Xu, Weihan
  • Xi, Kunling
  • Luo, Anxin
  • Fan, Kangqi
  • Wang, Fei

Abstract

This paper presents a piezoelectric energy harvesting device with anti-interference capability. The device utilizes magnetic coupling between the magnet at the tip of the piezoelectric cantilever and the alternating magnetic field surrounding power lines to efficiently harvest energy. Three piezoelectric cantilever structures are designed to optimize energy harvesting efficiency and space utilization. The impact of magnet interaction on the energy harvesting performance is investigated through theoretical analysis and experiments. The results demonstrate a decrease in the natural frequency of each piezoelectric cantilever due to magnet interaction. Frequency compensation techniques are applied to improve the overall output of the device. The anti-interference capability of the harvester is thoroughly evaluated, showing stable output even under random acceleration and the ability to withstand external interference. Additionally, the device successfully powers a wireless temperature and humidity sensor, validating its potential for self-powered wireless sensing nodes in grid monitoring systems.

Suggested Citation

  • Gu, Shanghao & Xu, Weihan & Xi, Kunling & Luo, Anxin & Fan, Kangqi & Wang, Fei, 2024. "High-performance piezoelectric energy harvesting system with anti-interference capability for smart grid monitoring," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016579
    DOI: 10.1016/j.renene.2023.119742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    2. Jason J. Yoo & Gabkyung Seo & Matthew R. Chua & Tae Gwan Park & Yongli Lu & Fabian Rotermund & Young-Ki Kim & Chan Su Moon & Nam Joong Jeon & Juan-Pablo Correa-Baena & Vladimir Bulović & Seong Sik Shi, 2021. "Efficient perovskite solar cells via improved carrier management," Nature, Nature, vol. 590(7847), pages 587-593, February.
    3. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    4. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    5. Kumar, Ajeet & Park, Sung Hoon & Patil, Deepak Rajaram & Hwang, Geon-Tae & Ryu, Jungho, 2022. "Effect of aspect ratio of piezoelectric constituents on the energy harvesting performance of magneto-mechano-electric generators," Energy, Elsevier, vol. 239(PB).
    6. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    7. Shi, Ge & Chang, Jian & Xia, Yinshui & Tong, Dike & Jia, Shengyao & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2023. "A wearable collaborative energy harvester combination of frequency-up conversion vibration, ambient light and thermal energy," Renewable Energy, Elsevier, vol. 202(C), pages 513-524.
    8. Li, Zhongjie & Zhao, Li & Wang, Junlei & Yang, Zhengbao & Peng, Yan & Xie, Shaorong & Ding, Jiheng, 2023. "Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance," Renewable Energy, Elsevier, vol. 204(C), pages 546-555.
    9. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    10. Miraglia, Marco & Romano, Donato & Camboni, Domenico & Inglese, Francesco & Oddo, Calogero Maria & Stefanini, Cesare, 2023. "Mechatronics-enabled harvesting of polarized wind kinetic energy through novel bio-mimetic swaying devices," Renewable Energy, Elsevier, vol. 211(C), pages 743-760.
    11. Gu, Mengfan & Song, Baowei & Zhang, Baoshou & Mao, Zhaoyong & Tian, Wenlong, 2020. "The effects of submergence depth on Vortex-Induced Vibration (VIV) and energy harvesting of a circular cylinder," Renewable Energy, Elsevier, vol. 151(C), pages 931-945.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    2. Zhang, Baoshou & Li, Boyang & Fu, Song & Ding, Wenjun & Mao, Zhaoyong, 2022. "Experimental investigation of the effect of high damping on the VIV energy converter near the free surface," Energy, Elsevier, vol. 244(PA).
    3. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Ren, Bing, 2020. "Experimental investigation of an annular sector OWC device incorporated into a dual cylindrical caisson breakwater," Energy, Elsevier, vol. 211(C).
    5. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    6. Cheng, Yong & Song, Fukai & Fu, Lei & Dai, Saishuai & Zhiming Yuan, & Incecik, Atilla, 2024. "Experimental investigation of a dual-pontoon WEC-type breakwater with a hydraulic-pneumatic complementary power take-off system," Energy, Elsevier, vol. 286(C).
    7. Kaewnern, Hathaipat & Wangkumharn, Sirikul & Deeyaonarn, Wongsathon & Yousaf, Abaid Ullah & Kongbuamai, Nattapan, 2023. "Investigating the role of research development and renewable energy on human development: An insight from the top ten human development index countries," Energy, Elsevier, vol. 262(PB).
    8. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    9. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    10. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    11. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    12. Calvin Kong Leng Sing & Jeng Shiun Lim & Timothy Gordon Walmsley & Peng Yen Liew & Masafumi Goto & Sheikh Ahmad Zaki Bin Shaikh Salim, 2020. "Time-Dependent Integration of Solar Thermal Technology in Industrial Processes," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    13. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    15. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
    17. Liu, Jiatao & Lu, Shilei, 2024. "Thermal performance of packed-bed latent heat storage tank integrated with flat-plate collectors under intermittent loads of building heating," Energy, Elsevier, vol. 299(C).
    18. Wang, Yuhan & Dong, Sheng, 2023. "Analytical investigation on a wave energy converter-dual-arc breakwater integration system," Energy, Elsevier, vol. 285(C).
    19. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    20. Mahmood Al-Riyami & Issam Bahadur & Hassen Ouakad, 2022. "There Is Plenty of Room inside a Bluff Body: A Hybrid Piezoelectric and Electromagnetic Wind Energy Harvester," Energies, MDPI, vol. 15(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.