IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1554-d515087.html
   My bibliography  Save this article

Optimized Modeling and Design of a PCM-Enhanced H 2 Storage

Author

Listed:
  • Andrea Luigi Facci

    (DEIM-School of Engineering, University of Tuscia, Largo dell’Universitá, 01100 Viterbo, Italy)

  • Marco Lauricella

    (IAC-CNR, Via dei Taurini 19, 00185 Rome, Italy)

  • Sauro Succi

    (Italian Institute of Technology, P.le Aldo Moro 1, 00185 Rome, Italy
    John A. Paulson School of Engineering and Applied Sciences-Harvard University-33 Oxford St., Cambridge, MA 02138, USA)

  • Vittorio Villani

    (OPV Solutions S.r.l., Via Zoe Fontana 220, 00131 Rome, Italy)

  • Giacomo Falcucci

    (John A. Paulson School of Engineering and Applied Sciences-Harvard University-33 Oxford St., Cambridge, MA 02138, USA
    Department of Enterprise Engineering “Mario Lucertini”, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy)

Abstract

Thermal and mechanical energy storage is pivotal for the effective exploitation of renewable energy sources, thus fostering the transition to a sustainable economy. Hydrogen-based systems are among the most promising solutions for electrical energy storage. However, several technical and economic barriers (e.g., high costs, low energy and power density, advanced material requirements) still hinder the diffusion of such solutions. Similarly, the realization of latent heat storages through phase change materials is particularly attractive because it provides high energy density in addition to allowing for the storage of the heat of fusion at a (nearly) constant temperature. In this paper, we posit the challenge to couple a metal hydride H 2 canister with a latent heat storage, in order to improve the overall power density and realize a passive control of the system temperature. A highly flexible numerical solver based on a hybrid Lattice Boltzmann Phase-Field (LB-PF) algorithm is developed to assist the design of the hybrid PCM-MH tank by studying the melting and solidification processes of paraffin-like materials. The present approach is used to model the storage of the heat released by the hydride during the H 2 loading process in a phase change material (PCM). The results in terms of Nusselt numbers are used to design an enhanced metal-hydride storage for H 2 -based energy systems, relevant for a reliable and cost-effective “Hydrogen Economy”. The application of the developed numerical model to the case study demonstrates the feasibility of the posited design. Specifically, the phase change material application significantly increases the heat flux at the metal hydride surface, thus improving the overall system power density.

Suggested Citation

  • Andrea Luigi Facci & Marco Lauricella & Sauro Succi & Vittorio Villani & Giacomo Falcucci, 2021. "Optimized Modeling and Design of a PCM-Enhanced H 2 Storage," Energies, MDPI, vol. 14(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1554-:d:515087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    2. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
    3. Loreti, Gabriele & Facci, Andrea L. & Baffo, Ilaria & Ubertini, Stefano, 2019. "Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 235(C), pages 747-760.
    4. Facci, Andrea L. & Sánchez, David & Jannelli, Elio & Ubertini, Stefano, 2015. "Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment," Applied Energy, Elsevier, vol. 158(C), pages 243-254.
    5. Vesselin Krassimirov Krastev & Giacomo Falcucci, 2018. "Simulating Engineering Flows through Complex Porous Media via the Lattice Boltzmann Method," Energies, MDPI, vol. 11(4), pages 1-14, March.
    6. Stefano Ubertini & Andrea Luigi Facci & Luca Andreassi, 2017. "Hybrid Hydrogen and Mechanical Distributed Energy Storage," Energies, MDPI, vol. 10(12), pages 1-16, December.
    7. Minutillo, M. & Forcina, A. & Jannelli, N. & Lubrano Lavadera, A., 2018. "Assessment of a sustainable energy chain designed for promoting the hydrogen mobility by means of fuel-cell powered bicycles," Energy, Elsevier, vol. 153(C), pages 200-210.
    8. Andrea Montessori & Michele La Rocca & Giacomo Falcucci & Sauro Succi, 2014. "Regularized lattice BGK versus highly accurate spectral methods for cavity flow simulations," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(12), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye, Yang & Zhu, Hongxing & Cheng, Honghui & Miao, Hong & Ding, Jing & Wang, Weilong, 2023. "Performance optimization of metal hydride hydrogen storage reactors based on PCM thermal management," Applied Energy, Elsevier, vol. 338(C).
    2. Kannaiyan, Kumaran & Lekshmi, G.S. & Ramakrishna, Seeram & Kang, Misook & Kumaravel, Vignesh, 2023. "Perspectives for the green hydrogen energy-based economy," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Stefano Ubertini & Andrea Luigi Facci & Luca Andreassi, 2017. "Hybrid Hydrogen and Mechanical Distributed Energy Storage," Energies, MDPI, vol. 10(12), pages 1-16, December.
    3. Wang, Xing & Li, Wen & Zhang, Xuehui & Zhu, Yangli & Zuo, Zhitao & Chen, Haisheng, 2019. "Efficiency improvement of a CAES low aspect ratio radial inflow turbine by NACA blade profile," Renewable Energy, Elsevier, vol. 138(C), pages 1214-1231.
    4. Dorota Brzezińska, 2018. "Ventilation System Influence on Hydrogen Explosion Hazards in Industrial Lead-Acid Battery Rooms," Energies, MDPI, vol. 11(8), pages 1-11, August.
    5. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    6. Loreti, Gabriele & Facci, Andrea L. & Baffo, Ilaria & Ubertini, Stefano, 2019. "Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 235(C), pages 747-760.
    7. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    8. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    9. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    10. Fengjiao Wang & Yikun Liu & Chaoyang Hu & Anqi Shen & Shuang Liang & Bo Cai, 2018. "A Simplified Physical Model Construction Method and Gas-Water Micro Scale Flow Simulation in Tight Sandstone Gas Reservoirs," Energies, MDPI, vol. 11(6), pages 1-16, June.
    11. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    12. Marco Castellini & Stefano Ubertini & Diego Barletta & Ilaria Baffo & Pietro Buzzini & Marco Barbanera, 2021. "Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source," Energies, MDPI, vol. 14(5), pages 1-21, March.
    13. Petrone, Giovanni & Zamboni, Walter & Spagnuolo, Giovanni, 2019. "An interval arithmetic-based method for parametric identification of a fuel cell equivalent circuit model," Applied Energy, Elsevier, vol. 242(C), pages 1226-1236.
    14. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    15. Jiangxu Huang & Kun He & Lei Wang, 2021. "Pore-Scale Investigation on Natural Convection Melting in a Square Cavity with Gradient Porous Media," Energies, MDPI, vol. 14(14), pages 1-19, July.
    16. del Horno, L. & Segura, E. & Morales, R. & Somolinos, J.A., 2020. "Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents," Applied Energy, Elsevier, vol. 276(C).
    17. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    18. Kwan, T.H. & Shen, Y. & Pei, G., 2021. "Recycling fuel cell waste heat to the thermoelectric cooler for enhanced combined heat, power and water production," Energy, Elsevier, vol. 223(C).
    19. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    20. Hansi Liu & Sheng Zhou & Tianduo Peng & Xunmin Ou, 2017. "Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Natural Gas-Based Distributed Generation Projects in China," Energies, MDPI, vol. 10(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1554-:d:515087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.