IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1329-d508199.html
   My bibliography  Save this article

Effect of Ultrasound on Henna Leaves Drying and Extraction of Lawsone: Experimental and Modeling Study

Author

Listed:
  • Said Bennaceur

    (Laboratoire de Développement des Energies Renouvelables et leurs Applications dans les zones Sahariennes (LDERAS), Université Tahri Mohamed de Béchar, Bechar 08000, Algeria)

  • Abdelaziz Berreghioua

    (Laboratory of Chemistry and Environmental Science (LCSE), Tahri Mohamed University, Bechar 08000, Algeria)

  • Lyes Bennamoun

    (Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB E3B5A3, Canada)

  • Antonio Mulet

    (ASPA Group, Department of Food Technology, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Belkacem Draoui

    (Laboratoire d’Energétique en Zones Arides, Université Tahri Mohamed de Béchar, Bechar 08000, Algeria)

  • Mostafa Abid

    (Département sciences de la matière, Faculté des sciences exactes, Université Tahri Mohamed de Béchar, Bechar 08000, Algeria)

  • Juan A. Carcel

    (ASPA Group, Department of Food Technology, Universitat Politècnica de València, 46022 Valencia, Spain)

Abstract

The effect of drying temperature and the application of ultrasound on drying kinetics of Lawsonia inermis (henna) leaves and the extraction of lawsone from the dried samples was addressed. Indeed, henna leaves were dried with and without the application of ultrasound (21.7 kHz, 30.8 kW/m 3 ) at 40, 50 and 60 °C with a constant air velocity (1 m/s). As expected, both the increase of temperature and the application of ultrasound decreased the drying time and increased the rate of extraction of the lawsone. The values of the effective diffusion coefficients obtained were used to quantify this influence showing the value increases with higher drying temperature and the application of ultrasound. Moreover, the influence of temperature was quantified by the estimation of the activation energy from an Arrhenius-type equation (46.25 kJ/mol in the case of drying without ultrasound application and 44.06 kJ/mol in the case of ultrasonically-assisted drying). Regarding the influence of studied variables on lawsone extraction yield, the higher is the temperature, the lower is the yield, probably linked with lawsone degradation reaction due to thermal treatment. On the contrary, the application of ultrasound improved the extraction yield mainly at the lower drying temperature tested of 40 °C.

Suggested Citation

  • Said Bennaceur & Abdelaziz Berreghioua & Lyes Bennamoun & Antonio Mulet & Belkacem Draoui & Mostafa Abid & Juan A. Carcel, 2021. "Effect of Ultrasound on Henna Leaves Drying and Extraction of Lawsone: Experimental and Modeling Study," Energies, MDPI, vol. 14(5), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1329-:d:508199
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lahsasni, Siham & Kouhila, Mohammed & Mahrouz, Mostafa & Idlimam, Ali & Jamali, Abdelkrim, 2004. "Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)," Energy, Elsevier, vol. 29(2), pages 211-224.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    2. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    3. Koukouch, Abdelghani & Idlimam, Ali & Asbik, Mohamed & Sarh, Brahim & Izrar, Boujemaa & Bostyn, Stéphane & Bah, Abdellah & Ansari, Omar & Zegaoui, Omar & Amine, Amina, 2017. "Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste," Renewable Energy, Elsevier, vol. 101(C), pages 565-574.
    4. Dissa, A.O. & Bathiebo, D.J. & Desmorieux, H. & Coulibaly, O. & Koulidiati, J., 2011. "Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes," Energy, Elsevier, vol. 36(5), pages 2517-2527.
    5. Balbay, Asim & Kaya, Yilmaz & Sahin, Omer, 2012. "Drying of black cumin (Nigella sativa) in a microwave assisted drying system and modeling using extreme learning machine," Energy, Elsevier, vol. 44(1), pages 352-357.
    6. Torki-Harchegani, Mehdi & Ghanbarian, Davoud & Ghasemi Pirbalouti, Abdollah & Sadeghi, Morteza, 2016. "Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 407-418.
    7. Prakash, Om & Laguri, Vinod & Pandey, Anukul & Kumar, Anil & Kumar, Arbind, 2016. "Review on various modelling techniques for the solar dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 396-417.
    8. Sandali, Messaoud & Boubekri, Abdelghani & Mennouche, Djamel & Gherraf, Noureddine, 2019. "Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study," Renewable Energy, Elsevier, vol. 135(C), pages 186-196.
    9. Gomaa G. Abd El-Wahhab & Hassan A. A. Sayed & Mahmoud A. Abdelhamid & Ayman Zaghlool & Ali Nasr & Ashraf Nagib & Mohamed Bourouah & Ahmed M. Abd-ElGawad & Younes M. Rashad & Mohamed Hafez & Ibrahim M., 2023. "Effect of Pre-Treatments on the Qualities of Banana Dried by Two Different Drying Methods," Sustainability, MDPI, vol. 15(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1329-:d:508199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.