IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1308-d507108.html
   My bibliography  Save this article

Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants

Author

Listed:
  • Mohan Liu

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Lei Chen

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Kaijun Jiang

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Xiaohui Zhou

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Zongyang Zhang

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Hanyu Zhou

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Weijia Wang

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Lijun Yang

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Yuguang Niu

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

In recent years, natural draft dry cooling systems with only one tower have been adopted in some 2 × 660 MW power-generating units owing to the advantage of lower construction costs. The operating cases of two power-generating units and one power-generating unit will both appear based on the power load requirement, which may lead to very different flow and heat transfer performances of this typical cooling system. Therefore, this research explores the local thermo-flow characteristics of air-cooled heat exchangers and sectors, and then analyzes the overall cooling performance of the above two operating cases under various wind conditions. Using the numerical modeling method, the results indicate that the flow and heat transfer performance of this cooling system decreases significantly in the case of one unit with half sectors dismissed. At wind speeds lower than 8 m/s, the difference in turbine back pressure between two units and one unit appears obviously higher than in other wind conditions, even reaching 4.37 kPa. Furthermore, the air-cooled heat exchanger in the lower layer always has better cooling capability than that in the upper layer, especially in conditions where there is an absence of wind and under low wind speeds. The operating case of one unit is not recommended for this dry cooling system because of the highly decreased energy efficiency. In conclusion, this research could provide theoretical support for the engineering operation of this typical natural draft dry cooling system in 2 × 660 MW power plants.

Suggested Citation

  • Mohan Liu & Lei Chen & Kaijun Jiang & Xiaohui Zhou & Zongyang Zhang & Hanyu Zhou & Weijia Wang & Lijun Yang & Yuguang Niu, 2021. "Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants," Energies, MDPI, vol. 14(5), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1308-:d:507108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madjid Soltani & Alireza Dehghani-Sanij & Ahmad Sayadnia & Farshad M. Kashkooli & Kobra Gharali & SeyedBijan Mahbaz & Maurice B. Dusseault, 2018. "Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface," Energies, MDPI, vol. 11(5), pages 1-23, April.
    2. Wang, Weiliang & Zhang, Hai & Li, Zheng & Lv, Junfu & Ni, Weidou & Li, Yongsheng, 2016. "Adoption of enclosure and windbreaks to prevent the degradation of the cooling performance for a natural draft dry cooling tower under crosswind conditions," Energy, Elsevier, vol. 116(P2), pages 1360-1369.
    3. Wang, Weiliang & Zhang, Hai & Liu, Pei & Li, Zheng & Lv, Junfu & Ni, Weidou, 2017. "The cooling performance of a natural draft dry cooling tower under crosswind and an enclosure approach to cooling efficiency enhancement," Applied Energy, Elsevier, vol. 186(P3), pages 336-346.
    4. Zhao, Yuanbin & Sun, Fengzhong & Li, Yan & Long, Guoqing & Yang, Zhi, 2015. "Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load," Applied Energy, Elsevier, vol. 149(C), pages 225-237.
    5. Lu, Yuanshen & Klimenko, Alexander & Russell, Hugh & Dai, Yuchen & Warner, John & Hooman, Kamel, 2018. "A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers," Applied Energy, Elsevier, vol. 217(C), pages 496-508.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    2. Zhao Li & Huimin Wei & Tao Wu & Xiaoze Du, 2021. "Optimization for Circulating Cooling Water Distribution of Indirect Dry Cooling System in a Thermal Power Plant under Crosswind Condition with Evolution Strategies Algorithm," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Modeling the performance of the indirect dry cooling system in a thermal power generating unit under variable ambient conditions," Energy, Elsevier, vol. 169(C), pages 625-636.
    4. Huiqian Guo & Yue Yang & Tongrui Cheng & Hanyu Zhou & Weijia Wang & Xiaoze Du, 2021. "Tower Configuration Impacts on the Thermal and Flow Performance of Steel-Truss Natural Draft Dry Cooling System," Energies, MDPI, vol. 14(7), pages 1-17, April.
    5. Lu, Yuanshen & Klimenko, Alexander & Russell, Hugh & Dai, Yuchen & Warner, John & Hooman, Kamel, 2018. "A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers," Applied Energy, Elsevier, vol. 217(C), pages 496-508.
    6. Weijia Wang & Lei Chen & Xianwei Huang & Lijun Yang & Xiaoze Du, 2017. "Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies," Energies, MDPI, vol. 10(12), pages 1-18, December.
    7. Sha Liu & Jiong Shen, 2022. "Modeling of Large-Scale Thermal Power Plants for Performance Prediction in Deep Peak Shaving," Energies, MDPI, vol. 15(9), pages 1-18, April.
    8. Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
    9. Yanqiang Kong & Weijia Wang & Zhitao Zuo & Lijun Yang & Xiaoze Du & Chao Xu & Yongping Yang, 2019. "Influencing Mechanisms of a Crosswind on the Thermo-Hydraulic Characteristics of a Large-Scale Air-Cooled Heat Exchanger," Energies, MDPI, vol. 12(6), pages 1-29, March.
    10. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    11. Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
    12. Zeyu Peng & Zeyu Li & Junquan Zeng & Jianting Yu, 2022. "Thermodynamic Study of Solar-Assisted Hybrid Cooling Systems with Consideration of Duration in Heat-Driven Processes," Energies, MDPI, vol. 15(10), pages 1-22, May.
    13. Tiefeng Chen & Qian Zhao & Yaoming Zhang & Chengjun Wang & Kaiming Li & Shixing Li & Longtao Quan & Yuanbin Zhao, 2024. "Air Equalizing Mechanism in Cooling Performance Improvement of Vertical Delta-Type Radiators," Energies, MDPI, vol. 17(5), pages 1-21, February.
    14. Xuchen Fan & Xiaofeng Lu & Jiping Wang & Zilong Li & Quanhai Wang & Zhonghao Dong & Rongdi Zhang, 2021. "Performance Evaluation of a Maisotsenko Cycle Cooling Tower with Uneven Length of Dry and Wet Channels in Hot and Humid Conditions," Energies, MDPI, vol. 14(24), pages 1-15, December.
    15. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    16. Mohammad Souri & Farshad Moradi Kashkooli & Madjid Soltani & Kaamran Raahemifar, 2021. "Effect of Upstream Side Flow of Wind Turbine on Aerodynamic Noise: Simulation Using Open-Loop Vibration in the Rod in Rod-Airfoil Configuration," Energies, MDPI, vol. 14(4), pages 1-24, February.
    17. Haotian Dong & Dawei Wan & Minghua Liu & Tiefeng Chen & Shasha Gao & Yuanbin Zhao, 2020. "Evaluation of the Hot Air Recirculation Effect and Relevant Empirical Formulae Applicability for Mechanical Draft Wet Cooling Towers," Energies, MDPI, vol. 13(13), pages 1-20, June.
    18. Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Transient behavior of the cold end system in an indirect dry cooling thermal power plant under varying operating conditions," Energy, Elsevier, vol. 181(C), pages 1202-1212.
    19. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
    20. Soltani, M. & Moradi Kashkooli, Farshad & Alian Fini, Mehdi & Gharapetian, Derrick & Nathwani, Jatin & Dusseault, Maurice B., 2022. "A review of nanotechnology fluid applications in geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1308-:d:507108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.