IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1022-d499926.html
   My bibliography  Save this article

Model-Based Design of a Pseudo-Cogenerative Heating System for e-Boat Battery Cold Start

Author

Listed:
  • Dario Fusai

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Alessandro Soldati

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Davide Lusignani

    (eDriveLAB s.r.l., 43124 Parma, Italy)

  • Paolo Santarelli

    (4e-consulting s.r.l., 44124 Ferrara, Italy)

  • Paolo Patroncini

    (4e-consulting s.r.l., 44124 Ferrara, Italy)

Abstract

Full-electric boats are an expression of recent advancements in the area of vessel electrification. The installed batteries can suffer from poor cold-start performance, especially in the frigid season and at higher latitudes, leading to driving power limitations immediately after startup. At state, the leading solution is to adopt a dedicated heater placed on the common cooling/heating circuit; this implies poor volume, weight, and cost figures, given the very limited duty cycle of such a part. The Heater-in-Converter (HiC) technology allows removing this specialized component, exploiting the power electronics converters already available on board: HiC modulates their efficiency to produce valuable heat (pseudo-cogeneration). In this work, we use the model-based approach to design this system, which requires heating power minimization to fulfill power electronics limitations, while guaranteeing the user-expected startup time to full power. A multistage model is used to get the yearly vessel temperature distribution from latitude information and some additional data. Then, a lumped parameter for the cooling/heating circuit is used to determine the minimum required power as a function of the properties of the thermal interface material used for the battery coupling. The design is validated on a 1:5 test bench (battery power and energy), which demonstrates how the technology can be to scaled up to also fit different boats and battery sizes.

Suggested Citation

  • Dario Fusai & Alessandro Soldati & Davide Lusignani & Paolo Santarelli & Paolo Patroncini, 2021. "Model-Based Design of a Pseudo-Cogenerative Heating System for e-Boat Battery Cold Start," Energies, MDPI, vol. 14(4), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1022-:d:499926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myers, Daryl R., 2005. "Solar radiation modeling and measurements for renewable energy applications: data and model quality," Energy, Elsevier, vol. 30(9), pages 1517-1531.
    2. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    3. Wei Jiang & Ke Song & Bailin Zheng & Yongchuan Xu & Ruoshi Fang, 2020. "Study on Fast Cold Start-Up Method of Proton Exchange Membrane Fuel Cell Based on Electric Heating Technology," Energies, MDPI, vol. 13(17), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyun-Jin Lee & Shin-Young Kim & Chang-Yeol Yun, 2017. "Comparison of Solar Radiation Models to Estimate Direct Normal Irradiance for Korea," Energies, MDPI, vol. 10(5), pages 1-12, April.
    2. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    3. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.
    4. Khaled M. Alawasa & Rashid S. AlAbri & Amer S. Al-Hinai & Mohammed H. Albadi & Abdullah H. Al-Badi, 2021. "Experimental Study on the Effect of Dust Deposition on a Car Park Photovoltaic System with Different Cleaning Cycles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    5. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    6. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2020. "Exploring the Potentials of Artificial Neural Network Trained with Differential Evolution for Estimating Global Solar Radiation," Energies, MDPI, vol. 13(10), pages 1-18, May.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Oliver O. Apeh & Ochuko K. Overen & Edson L. Meyer, 2021. "Monthly, Seasonal and Yearly Assessments of Global Solar Radiation, Clearness Index and Diffuse Fractions in Alice, South Africa," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    9. Turgut Karahüseyin & Serkan Abbasoğlu, 2022. "Performance Loss Rates of a 1 MWp PV Plant with Various Tilt Angle, Orientation and Installed Environment in the Capital of Cyprus," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    10. Yong-Joon Jun & Young-Hak Song & Dae-Young Kim & Kyung-Soon Park, 2017. "Analysis of the Optimum Solar Collector Installation Angle from the Viewpoint of Energy Use Patterns," Energies, MDPI, vol. 10(11), pages 1-18, November.
    11. Hemant Bherwani & Saima Anjum & Ankit Gupta & Anju Singh & Rakesh Kumar, 2021. "Establishing influence of morphological aspects on microclimatic conditions through GIS-assisted mathematical modeling and field observations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15857-15880, November.
    12. Jesús-Ignacio Prieto & David García & Ruth Santoro, 2022. "Comparative Analysis of Accuracy, Simplicity and Generality of Temperature-Based Global Solar Radiation Models: Application to the Solar Map of Asturias," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
    13. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Esmaeilion, Farbod & Memon, Saim & Garcia, Davide Astiaso & Assad, Mamdouh El Haj, 2022. "A solar thermal driven ORC-VFR system employed in subtropical Mediterranean climatic building," Energy, Elsevier, vol. 250(C).
    14. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    15. Zhu, Zhu & Lu, Hao & Zhao, Wenjun & tuerxunjiang, Ailidaer & Chang, Xiqiang, 2023. "Materials, performances and applications of electric heating films," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Dusan Maga & Jaromir Hrad & Jiri Hajek & Akeel Othman, 2021. "Application of Minimum Energy Effect to Numerical Reconstruction of Insolation Curves," Energies, MDPI, vol. 14(17), pages 1-18, August.
    17. Younes, S. & Muneer, T., 2007. "Clear-sky classification procedures and models using a world-wide data-base," Applied Energy, Elsevier, vol. 84(6), pages 623-645, June.
    18. Martins, Guilherme Santos & Giesbrecht, Mateus, 2021. "Clearness index forecasting: A comparative study between a stochastic realization method and a machine learning algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 787-805.
    19. Munawwar, Saima & Muneer, Tariq, 2007. "Statistical approach to the proposition and validation of daily diffuse irradiation models," Applied Energy, Elsevier, vol. 84(4), pages 455-475, April.
    20. Muneer, T. & Younes, S. & Munawwar, S., 2007. "Discourses on solar radiation modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 551-602, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1022-:d:499926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.