IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p675-d488918.html
   My bibliography  Save this article

The Conceptual Research over Low-Switching Modulation Strategy for Matrix Converters with the Coupled Reactors

Author

Listed:
  • Pawel Szczepankowski

    (Department of Power Electronics and Electrical Machines, Faculty of Electrical and Control Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland)

  • Jaroslaw Luszcz

    (Department of Power Electronics and Electrical Machines, Faculty of Electrical and Control Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland)

  • Alexander Usoltsev

    (Department of Electrical Engineering and Precision Electro-Mechanical Systems, ITMO University, 197101 St. Petersburg, Russia)

  • Natalia Strzelecka

    (Department of Ship Automation, Faculty of Electrical Engineering, Gdynia Maritime University, 81-225 Gdynia, Poland)

  • Enrique Romero-Cadaval

    (Department of Electrical Electronic and Control Engineering, University of Extremadura, 06006 Badajoz, Spain)

Abstract

In this paper, different Pulse Width Modulation (PWM) strategies for operating with a low-switching frequency, a topology that combines Conventional Matrix Converters (CMCs), and Coupled Reactors (CRs) are presented and discussed. The principles of the proposed strategies are first discussed by a conceptual analysis and later validated by simulation. The paper shows how the combination of CMCs and CRs could be of special interest for sharing the current among these converters’ modules, being possible to scale this solution to be a modular system. Therefore, the use of coupled reactors allows one to implement phase shifters that give the solution the ability to generate a stair-case load voltage with the desired power quality even the matrix converters are operated with a low-switching frequency close to the grid frequency. The papers also address how the volume and weight of the coupled reactors decrease with the growth of the fundamental output frequency, making this solution especially appropriate for high power applications that are supplied at high AC frequencies (for example, in airport terminals, where a supply of 400 Hz is required).

Suggested Citation

  • Pawel Szczepankowski & Jaroslaw Luszcz & Alexander Usoltsev & Natalia Strzelecka & Enrique Romero-Cadaval, 2021. "The Conceptual Research over Low-Switching Modulation Strategy for Matrix Converters with the Coupled Reactors," Energies, MDPI, vol. 14(3), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:675-:d:488918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianzhong Zhang & Shuai Xu & Zakiud Din & Xing Hu, 2019. "Hybrid Multilevel Converters: Topologies, Evolutions and Verifications," Energies, MDPI, vol. 12(4), pages 1-29, February.
    2. Ibrahim Ahmad & Ghaeth Fandi & Zdenek Muller & Josef Tlusty, 2019. "Voltage Quality and Power Factor Improvement in Smart Grids Using Controlled DG Units," Energies, MDPI, vol. 12(18), pages 1-18, September.
    3. Antonio Ventosa-Cutillas & Pablo Montero-Robina & Francisco Umbría & Federico Cuesta & Francisco Gordillo, 2019. "Integrated Control and Modulation for Three-Level NPC Rectifiers," Energies, MDPI, vol. 12(9), pages 1-15, April.
    4. Krzysztof Jakub Szwarc & Pawel Szczepankowski & Janusz Nieznański & Cezary Swinarski & Alexander Usoltsev & Ryszard Strzelecki, 2020. "Hybrid Modulation for Modular Voltage Source Inverters with Coupled Reactors," Energies, MDPI, vol. 13(17), pages 1-17, August.
    5. Cristian Verdugo & Samir Kouro & Christian A. Rojas & Marcelo A. Perez & Thierry Meynard & Mariusz Malinowski, 2019. "Five-Level T-type Cascade Converter for Rooftop Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 12(9), pages 1-20, May.
    6. Vitor Fernão Pires & Joaquim Monteiro & José Fernando Silva, 2019. "Dual 3-Phase Bridge Multilevel Inverters for AC Drives with Voltage Sag Ride-through Capability," Energies, MDPI, vol. 12(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Muñoz-Ramírez & Hugo Valderrama-Blavi & Marco Rivera & Carlos Restrepo, 2019. "An Approach to Natural Sampling Using a Digital Sampling Technique for SPWM Multilevel Inverter Modulation," Energies, MDPI, vol. 12(15), pages 1-16, July.
    2. Marek Michalczuk & Marcin Nikoniuk & Paweł Radziszewski, 2021. "Multi-Inverter Linear Motor Based Vehicle Propulsion System for a Small Cargo Transportation," Energies, MDPI, vol. 14(15), pages 1-16, July.
    3. Wagner A. Vilela Junior & Antonio P. Coimbra & Gabriel A. Wainer & Joao Caetano Neto & Jose A. G. Cararo & Marcio R. C. Reis & Paulo V. Santos & Wesley P. Calixto, 2021. "Analysis and Adequacy Methodology for Voltage Violations in Distribution Power Grid," Energies, MDPI, vol. 14(14), pages 1-21, July.
    4. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    5. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Muhyaddin Rawa & Prem P & Jagabar Sathik Mohamed Ali & Marif Daula Siddique & Saad Mekhilef & Addy Wahyudie & Mehdi Seyedmahmoudian & Alex Stojcevski, 2021. "A New Multilevel Inverter Topology with Reduced DC Sources," Energies, MDPI, vol. 14(15), pages 1-21, August.
    7. Ventosa-Cutillas, Antonio & Montero-Robina, Pablo & Cuesta, Federico & Gordillo, Francisco, 2020. "A simple modulation approach for interfacing three-level Neutral-Point-Clamped converters to the grid," Energy, Elsevier, vol. 205(C).
    8. Antonio Ventosa-Cutillas & Pablo Montero-Robina & Francisco Umbría & Federico Cuesta & Francisco Gordillo, 2019. "Integrated Control and Modulation for Three-Level NPC Rectifiers," Energies, MDPI, vol. 12(9), pages 1-15, April.
    9. Kui-Jun Lee, 2020. "Analytical Modeling of Neutral Point Current in T-type Three-level PWM Converter," Energies, MDPI, vol. 13(6), pages 1-11, March.
    10. Hussain Mohammad Bassi & Zainal Salam, 2019. "A New Hybrid Multilevel Inverter Topology with Reduced Switch Count and dc Voltage Sources," Energies, MDPI, vol. 12(6), pages 1-15, March.
    11. Tariq Kamal & Murat Karabacak & Vedran S. Perić & Syed Zulqadar Hassan & Luis M. Fernández-Ramírez, 2020. "Novel Improved Adaptive Neuro-Fuzzy Control of Inverter and Supervisory Energy Management System of a Microgrid," Energies, MDPI, vol. 13(18), pages 1-22, September.
    12. Guozheng Zhang & Bingxu Wei & Xin Gu & Xinmin Li & Zhanqing Zhou & Wei Chen, 2019. "Sector Subdivision Based SVPWM Strategy of Neutral-Point-Clamped Three-Level Inverter for Current Ripple Reduction," Energies, MDPI, vol. 12(14), pages 1-16, July.
    13. Xiaoning Shen & Jianxing Liu & Abraham Marquez & Wensheng Luo & Jose I. Leon & Sergio Vazquez & Leopoldo G. Franquelo, 2020. "A High-Gain Observer-Based Adaptive Super-Twisting Algorithm for DC-Link Voltage Control of NPC Converters," Energies, MDPI, vol. 13(5), pages 1-16, March.
    14. Norouzi, F. & Hoppe, T. & Kamp, L.M. & Manktelow, C. & Bauer, P., 2023. "Diagnosis of the implementation of smart grid innovation in The Netherlands and corrective actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    15. Qian Cheng & Chenchen Wang & Jian Wang, 2020. "Analysis on Displacement Angle of Phase-Shifted Carrier PWM for Modular Multilevel Converter," Energies, MDPI, vol. 13(24), pages 1-21, December.
    16. Chandramouli Adupa & V. Sivachidambaranathan, 2022. "Critical analysis on cascaded T-type multilevel inverter topology to grid-integrated photovoltaic systems for symmetrical voltage ratios," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1474-1484, June.
    17. Freeman Chiranga & Lesedi Masisi, 2021. "Variable Speed Drive DC-Bus Voltage Dip Proofing," Energies, MDPI, vol. 14(24), pages 1-19, December.
    18. Yao Xue & Xiaofeng Yang & Lutian Yuan & Trillion Q. Zheng, 2019. "Operation and Control of a Seven-Level V-Clamp Multilevel Converter," Energies, MDPI, vol. 12(24), pages 1-13, December.
    19. Armel Asongu Nkembi & Paolo Cova & Emilio Sacchi & Emanuele Coraggioso & Nicola Delmonte, 2023. "A Comprehensive Review of Power Converters for E-Mobility," Energies, MDPI, vol. 16(4), pages 1-28, February.
    20. Muhammad Luqman & Gang Yao & Lidan Zhou & Tao Zhang & Anil Lamichhane, 2019. "A Novel Hybrid Converter Proposed for Multi-MW Wind Generator for Offshore Applications," Energies, MDPI, vol. 12(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:675-:d:488918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.