IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4450-d405233.html
   My bibliography  Save this article

Hybrid Modulation for Modular Voltage Source Inverters with Coupled Reactors

Author

Listed:
  • Krzysztof Jakub Szwarc

    (LINTE 2 Laboratory, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-216 Gdańsk, Poland)

  • Pawel Szczepankowski

    (LINTE 2 Laboratory, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-216 Gdańsk, Poland)

  • Janusz Nieznański

    (LINTE 2 Laboratory, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-216 Gdańsk, Poland)

  • Cezary Swinarski

    (LINTE 2 Laboratory, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-216 Gdańsk, Poland)

  • Alexander Usoltsev

    (Faculty od Control Systems and Robotics, ITMO University, 191002 Saint Petersburg, Russia)

  • Ryszard Strzelecki

    (LINTE 2 Laboratory, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-216 Gdańsk, Poland)

Abstract

This paper proposes and discusses a concept of a hybrid modulation for the control of modular voltage source inverters with coupled reactors. The use of coupled reactors as the integrating elements leads to significant reduction in the size and weight of the circuit. The proposed modulation combines novel coarsely quantized pulse amplitude modulation (CQ-PAM) and innovative space-vector pulse width modulation (SVPWM). The former enjoys very low transistor switching frequency and low harmonic elimination, while the latter ensures high resolution of amplitude control. The SVPWM is based on the use of barycentric coordinates. The feasibility of the proposed solution is verified by simulations and laboratory tests of a 12-pulse modular voltage source inverters with two-level and three-level component inverters.

Suggested Citation

  • Krzysztof Jakub Szwarc & Pawel Szczepankowski & Janusz Nieznański & Cezary Swinarski & Alexander Usoltsev & Ryszard Strzelecki, 2020. "Hybrid Modulation for Modular Voltage Source Inverters with Coupled Reactors," Energies, MDPI, vol. 13(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4450-:d:405233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giampaolo Buticchi & David Gerada & Luigi Alberti & Michael Galea & Pat Wheeler & Serhiy Bozhko & Sergei Peresada & He Zhang & Chengming Zhang & Chris Gerada, 2019. "Challenges of the Optimization of a High-Speed Induction Machine for Naval Applications," Energies, MDPI, vol. 12(12), pages 1-20, June.
    2. Jan Iwaszkiewicz & Piotr Mysiak, 2019. "Supply System for Three-Level Inverters Using Multi-Pulse Rectifiers with Coupled Reactors," Energies, MDPI, vol. 12(17), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel Szczepankowski & Jaroslaw Luszcz & Alexander Usoltsev & Natalia Strzelecka & Enrique Romero-Cadaval, 2021. "The Conceptual Research over Low-Switching Modulation Strategy for Matrix Converters with the Coupled Reactors," Energies, MDPI, vol. 14(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Sleszynski & Artur Cichowski & Piotr Mysiak, 2020. "Suppression of Supply Current Harmonics of 18-Pulse Diode Rectifier by Series Active Power Filter with LC Coupling," Energies, MDPI, vol. 13(22), pages 1-12, November.
    2. Warat Sriwannarat & Pattasad Seangwong & Vannakone Lounthavong & Sirote Khunkitti & Apirat Siritaratiwat & Pirat Khunkitti, 2020. "An Improvement of Output Power in Doubly Salient Permanent Magnet Generator Using Pole Configuration Adjustment," Energies, MDPI, vol. 13(17), pages 1-14, September.
    3. Filip Kutt & Michał Michna & Grzegorz Kostro, 2020. "Non-Salient Brushless Synchronous Generator Main Exciter Design for More Electric Aircraft," Energies, MDPI, vol. 13(11), pages 1-17, May.
    4. Andrzej Łebkowski & Wojciech Koznowski, 2020. "Analysis of the Use of Electric and Hybrid Drives on SWATH Ships," Energies, MDPI, vol. 13(24), pages 1-26, December.
    5. Andrzej Łebkowski, 2020. "Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms," Energies, MDPI, vol. 13(6), pages 1-23, March.
    6. Andrzej Łebkowski & Jakub Wnorowski, 2021. "A Comparative Analysis of Energy Consumption by Conventional and Anchor Based Dynamic Positioning of Ship," Energies, MDPI, vol. 14(3), pages 1-26, January.
    7. Rohollah Abdollahi & Gevork B. Gharehpetian & Fazel Mohammadi & Saravana Prakash P, 2022. "Multi-Pulse Rectifier Based on an Optimal Pulse Doubling Technique," Energies, MDPI, vol. 15(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4450-:d:405233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.