IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p281-d475936.html
   My bibliography  Save this article

Micro-Raman Spectroscopy of Selected Macerals of the Huminite Group: An Example from the Szczerców Lignite Deposit (Central Poland)

Author

Listed:
  • Barbara Bielowicz

    (Faculty of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Rafał Morga

    (Institute of Applied Geology, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland)

Abstract

Lignite (ulminite reflectance Rr = 0.27%) from the Szczerców deposit (Central Poland) is dominated by huminite group macerals, containing a high proportion of attrinite and densinite. Densinite and ulminite are more abundant in small aromatic units than attrinite, which may result from their stronger gelification. The differences in Raman spectral characteristics between attrinite and ulminite are more pronounced than between attrinite and densinite. Fusinite, in comparison with the huminite group macerals, is composed of larger, more varied aromatic systems. The D4 (1190–1200 cm −1 ) and D5 bands (1280–1290 cm −1 ), most likely, correspond to different chemical structures, and their origin should be further investigated.

Suggested Citation

  • Barbara Bielowicz & Rafał Morga, 2021. "Micro-Raman Spectroscopy of Selected Macerals of the Huminite Group: An Example from the Szczerców Lignite Deposit (Central Poland)," Energies, MDPI, vol. 14(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:281-:d:475936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Jun & Tang, Hao & Su, Sheng & Liu, Jiawei & Xu, Kai & Qian, Kun & Wang, Yi & Zhou, Yingbiao & Hu, Song & Zhang, Anchao & Xiang, Jun, 2018. "A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals," Applied Energy, Elsevier, vol. 212(C), pages 46-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafał Morga & Barbara Bielowicz, 2022. "Raman Spectroscopy of Lignite Gasification Char Morphotypes," Energies, MDPI, vol. 15(16), pages 1-16, August.
    2. Marcin Maksymowicz & Aleksander Frejowski & Adam Bajcar & Bartłomiej Jura, 2022. "Application of Hydro Borehole Mining (HBM) Technology for Lignite Extraction—An Environmental Assessment (LCA) and a Comparative Study with the Opencast Method," Energies, MDPI, vol. 15(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yuchen & Li, Xianglin & Li, Chao & Zhang, Lijun & Zhang, Shu & Li, Bin & Wang, Shuang & Hu, Xun, 2022. "Pyrolysis of typical plastics and coupled with steam reforming of their derived volatiles for simultaneous production of hydrogen-rich gases and heavy organics," Renewable Energy, Elsevier, vol. 200(C), pages 476-491.
    2. Li, Jiawei & Fan, Subo & Zhang, Xuyang & Chen, Zhichao & Qiao, Yanyu & Yuan, Zhenhua & Zeng, Lingyan & Li, Zhengqi, 2022. "Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash," Energy, Elsevier, vol. 251(C).
    3. Jiang, Xu & Xu, Jun & He, Qichen & Wang, Cong & Jiang, Long & Xu, Kai & Wang, Yi & Su, Sheng & Hu, Song & Du, Zhenyi & Xiang, Jun, 2023. "A study of the relationships between coal heterogeneous chemical structure and pyrolysis behaviours: Mechanism and predicting model," Energy, Elsevier, vol. 282(C).
    4. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    5. Zhu, Wenkun & Li, Xiaohui & Sun, Rui & Cao, Zhen & Yuan, Mengfan & Sun, Liutao & Yu, Xin & Wu, Jiangquan, 2022. "Investigation of the CN and C2 emission characteristics and microstructural evolution of coal to char using laser-induced breakdown spectroscopy and Raman spectroscopy," Energy, Elsevier, vol. 240(C).
    6. Zhao, Jingyu & Deng, Jun & Chen, Long & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation," Energy, Elsevier, vol. 181(C), pages 136-147.
    7. Liang, Wang & Jiang, Chunhe & Wang, Guangwei & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Xu, Runsheng & Wang, Peng & Ye, Lian & Li, Jinhua & Wang, Chuan, 2022. "Research on the co-combustion characteristics and kinetics of agricultural waste hydrochar and anthracite," Renewable Energy, Elsevier, vol. 194(C), pages 1119-1130.
    8. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    9. Zhu, Wenkun & Li, Xiaohui & Sun, Rui & Yan, Yonghong & Liu, Jing & Wang, Zhuozhi & Yu, Xing, 2023. "Microstructural evolution of coal to char after pyrolysis using laser-induced breakdown spectroscopy and Raman spectroscopy," Energy, Elsevier, vol. 267(C).
    10. Qiao, Yanyu & Chen, Zhichao & Wu, Xiaolan & Li, Zhengqi, 2023. "Effect of demineralization on waste tire pyrolysis char physical, chemical characteristics and combustion characteristics," Energy, Elsevier, vol. 284(C).
    11. Ma, Cheng & Zhao, Yuzhen & Lang, Tingting & Zou, Chong & Zhao, Junxue & Miao, Zongcheng, 2023. "Pyrolysis characteristics of low-rank coal in a low-nitrogen pyrolysis atmosphere and properties of the prepared chars," Energy, Elsevier, vol. 277(C).
    12. Buxin Su & Guangwei Wang & Renguo Li & Kun Xu & Junyi Wu & Desheng Li & Jiawen Liu, 2022. "Co-Combustion Behavior of Paper Sludge Hydrochar and Pulverized Coal: Low Rank Coal and Its Product by Hydrothermal Carbonization," Energies, MDPI, vol. 15(15), pages 1-12, August.
    13. Li, Yukai & Sun, Shaozeng & Feng, Dongdong & Zhang, Wenda & Zhao, Yijun & Qin, Yukun, 2023. "Syngas tempered pulverized coal reburning: Effect of different reaction gas components," Energy, Elsevier, vol. 271(C).
    14. Jiangyong He & Chong Zou & Junxue Zhao & Jiale Xi & Yuan She & Mengmeng Ren & Yufen Xu, 2022. "Influence of Raman Spectroscopy Test Conditions on the Results of Carbon Chemical Structure of Chars," Energies, MDPI, vol. 15(15), pages 1-17, August.
    15. Jiang, Bingyou & Yu, Chang-Fei & Yuan, Liang & Lu, Kunlun & Tao, Wenhan & Lin, Hanyi & Zhou, Yu, 2023. "Investigation on oxidative pyrolysis characteristics of bituminous coal through thermal analysis and density functional theory," Applied Energy, Elsevier, vol. 349(C).
    16. Yang Ma & Yan Gao & Xiumin Jiang, 2023. "Influences of the Introduced O-Containing Functional Groups on the Gaseous Pyrolysis Product of Superfine Pulverized Coal," Energies, MDPI, vol. 16(11), pages 1-17, May.
    17. Zhang, Chenting & Chao, Li & Zhang, Zhanming & Zhang, Lijun & Li, Qingyin & Fan, Huailin & Zhang, Shu & Liu, Qing & Qiao, Yingyun & Tian, Yuanyu & Wang, Yi & Hu, Xun, 2021. "Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Xiong, Zhe & Syed-Hassan, Syed Shatir A. & Hu, Xun & Guo, Junhao & Qiu, Jihua & Zhao, Xingyu & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2019. "Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil: Characterization of coke structure and elucidation of coke formation mechanism," Applied Energy, Elsevier, vol. 239(C), pages 981-990.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:281-:d:475936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.