IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8129-d694787.html
   My bibliography  Save this article

An Experimental Study on Transient Response of a Hybrid Thermoelectric–Photovoltaic System with Beam Splitter

Author

Listed:
  • Sajjad Mahmoudinezhad

    (AAU Energy, Aalborg University, Pontoppidanstraede 111, DK-9220 Aalborg, Denmark)

  • Petru Adrian Cotfas

    (Electrical Engineering and Computer Science Faculty, Transilvania University of Brasov, 500036 Brasov, Romania)

  • Daniel Tudor Cotfas

    (Electrical Engineering and Computer Science Faculty, Transilvania University of Brasov, 500036 Brasov, Romania)

  • Enok Johannes Haahr Skjølstrup

    (Department of Materials and Production, Aalborg University, Skjernvej 4A, DK-9220 Aalborg, Denmark)

  • Kjeld Pedersen

    (Department of Materials and Production, Aalborg University, Skjernvej 4A, DK-9220 Aalborg, Denmark)

  • Lasse Rosendahl

    (AAU Energy, Aalborg University, Pontoppidanstraede 111, DK-9220 Aalborg, Denmark)

  • Alireza Rezania

    (AAU Energy, Aalborg University, Pontoppidanstraede 111, DK-9220 Aalborg, Denmark)

Abstract

In the current study, the electrical responses of a thermoelectric (TE) module and a photovoltaic (PV) cell are investigated in three different systems, namely, a PV-only system, TE-only system, and hybrid TE-PV system with a beam splitter (TE-PV-BS), under variable solar irradiations demonstrating partly cloudy weather conditions. To enhance the deployment of solar energy, a predesigned beam splitter combined with the amorphous silicon TE and PV system is used in the experiments. The impact of the spectral beam splitting technology on the conversion performance of the TE module and PV cell in the hybrid system is studied and compared to the performance of the TE-only and PV-only systems. The electrical output parameters of the TE module and PV cell are obtained for the studied systems, and they are discussed in detail. The results of this work show that the power generated by the PV cell has a stepwise fluctuation similar to the variation in the concentrated solar radiation. Affected by its heat capacity, the power variation is monotonous with the TE module. The results moreover indicate that there is more power generated by the PV cell in the TE-PV-BS hybrid system than by the PV-only system. In comparison, the TE-only system produces more power than the TE module in the hybrid system. Furthermore, the TE-PV-BS hybrid system generates higher and more stable electrical power than the TE-only and PV-only systems, showing a significant advantage of the spectrum management concept.

Suggested Citation

  • Sajjad Mahmoudinezhad & Petru Adrian Cotfas & Daniel Tudor Cotfas & Enok Johannes Haahr Skjølstrup & Kjeld Pedersen & Lasse Rosendahl & Alireza Rezania, 2021. "An Experimental Study on Transient Response of a Hybrid Thermoelectric–Photovoltaic System with Beam Splitter," Energies, MDPI, vol. 14(23), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8129-:d:694787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    2. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    3. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    4. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    5. Wahyu H. Piarah & Zuryati Djafar & Syafaruddin & Mustofa, 2019. "The Characterization of a Spectrum Splitter of TechSpec AOI 50.0mm Square Hot and Cold Mirrors Using a Halogen Light for a Photovoltaic-Thermoelectric Generator Hybrid," Energies, MDPI, vol. 12(3), pages 1-13, January.
    6. Da, Yun & Xuan, Yimin & Li, Qiang, 2016. "From light trapping to solar energy utilization: A novel photovoltaic–thermoelectric hybrid system to fully utilize solar spectrum," Energy, Elsevier, vol. 95(C), pages 200-210.
    7. Pereira, A. & Caroff, T. & Lorin, G. & Baffie, T. & Romanjek, K. & Vesin, S. & Kusiaku, K. & Duchemin, H. & Salvador, V. & Miloud-Ali, N. & Aixala, L. & Simon, J., 2015. "High temperature solar thermoelectric generator – Indoor characterization method and modeling," Energy, Elsevier, vol. 84(C), pages 485-492.
    8. Al-Nimr, Moh’d A. & Tashtoush, Bourhan M. & Khasawneh, Mohammad A. & Al-Keyyam, Ibrahim, 2017. "A hybrid concentrated solar thermal collector/thermo-electric generation system," Energy, Elsevier, vol. 134(C), pages 1001-1012.
    9. Mahmoudinezhad, S. & Cotfas, P.A. & Cotfas, D.T. & Rosendahl, L.A. & Rezania, A., 2020. "Response of thermoelectric generators to Bi2Te3 and Zn4Sb3 energy harvester materials under variant solar radiation," Renewable Energy, Elsevier, vol. 146(C), pages 2488-2498.
    10. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelkader Rjafallah & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2022. "Legs Geometry Influence on the Performance of the Thermoelectric Module," Sustainability, MDPI, vol. 14(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    2. Mahmoudinezhad, S. & Cotfas, D.T. & Cotfas, P.A. & Skjølstrup, Enok J.H. & Pedersen, K. & Rosendahl, L. & Rezania, A., 2022. "Experimental investigation on spectrum beam splitting photovoltaic–thermoelectric generator under moderate solar concentrations," Energy, Elsevier, vol. 238(PC).
    3. Yin, Ershuai & Li, Qiang, 2023. "High-efficiency dynamic lossless coupling of a spectrum splitting photovoltaic-thermoelectric system," Energy, Elsevier, vol. 282(C).
    4. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Cui, Y.J. & Wang, B.L. & Wang, K.F. & Wang, G.G. & Zhang, A.B., 2022. "An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device," Renewable Energy, Elsevier, vol. 182(C), pages 923-933.
    6. Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
    7. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    8. Hazama, Hirofumi & Masuoka, Yumi & Suzumura, Akitoshi & Matsubara, Masato & Tajima, Shin & Asahi, Ryoji, 2018. "Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency," Applied Energy, Elsevier, vol. 226(C), pages 381-388.
    9. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    10. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    11. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
    12. Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
    13. Kandil, A.A. & Awad, Mohamed M. & Sultan, Gamal I. & Salem, Mohamed S., 2022. "Investigating the performance characteristics of low concentrated photovoltaic systems utilizing a beam splitting device under variable cutoff wavelengths," Renewable Energy, Elsevier, vol. 196(C), pages 375-389.
    14. Liu, Junwei & Tang, Huajie & Zhang, Debao & Jiao, Shifei & Zhou, Zhihua & Zhang, Zhuofen & Ling, Jihong & Zuo, Jian, 2020. "Performance evaluation of the hybrid photovoltaic-thermoelectric system with light and heat management," Energy, Elsevier, vol. 211(C).
    15. Shen, Zu-Guo & Liu, Xun & Chen, Shuai & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2018. "Theoretical analysis on a segmented annular thermoelectric generator," Energy, Elsevier, vol. 157(C), pages 297-313.
    16. Kwan, Trevor Hocksun & Yao, Qinghe, 2019. "Preliminary study of integrating the vapor compression cycle with concentrated photovoltaic panels for supporting hydrogen production," Renewable Energy, Elsevier, vol. 134(C), pages 828-836.
    17. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2020. "Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration," Renewable Energy, Elsevier, vol. 162(C), pages 1828-1841.
    18. Wu, Haojin & Zhou, Zhijun & Shan, Shiquan, 2022. "Optimal design principle of a cascading solar photovoltaic system with concentrating spectrum splitting and reshaping," Renewable Energy, Elsevier, vol. 197(C), pages 197-210.
    19. Petru Adrian Cotfas & Daniel Tudor Cotfas, 2020. "Comprehensive Review of Methods and Instruments for Photovoltaic–Thermoelectric Generator Hybrid System Characterization," Energies, MDPI, vol. 13(22), pages 1-32, November.
    20. Zhou, Yi-Peng & He, Ya-Ling & Qiu, Yu & Ren, Qinlong & Xie, Tao, 2017. "Multi-scale investigation on the absorbed irradiance distribution of the nanostructured front surface of the concentrated PV-TE device by a MC-FDTD coupled method," Applied Energy, Elsevier, vol. 207(C), pages 18-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8129-:d:694787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.