IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8015-d692452.html
   My bibliography  Save this article

Variation of White Spruce Carbon Content with Age, Height, Social Classes and Silvicultural Management

Author

Listed:
  • Cyriac S. Mvolo

    (Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, AB T6H-3S5, Canada)

  • James D. Stewart

    (Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, AB T6H-3S5, Canada)

  • Christopher Helmeste

    (Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, AB T6H-3S5, Canada)

  • Ahmed Koubaa

    (Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 445 Boulevard, de l’Université, Rouyn-Noranda, QC J9X-5E4, Canada)

Abstract

The accuracy and precision with which carbon amounts have been accounted for in forests have been questioned. As countries seek to comply with agreements to reduce global warming and industries seek to maximize bioenergy potential, this matter has increased international concern. White spruce ( Picea glauca (Moench) Voss) stand density management trials in the Petawawa Research Forest, Ontario, Canada, were sampled to evaluate carbon concentration variation within trees and plots of differing stand density. Sample-drying methodologies were also tested to compare freeze-dried carbon (FDC) and oven-dried carbon (ODC) measurements. The average FDC was 51.80 ± 1.19%, and the corrected freeze-dried carbon content (FDC COR ) was 51.76 ± 1.33%. The average ODC was 49.10 ± 0.92%, and the average volatile carbon fraction (Cvol) was 2.67 ± 1.71%. FDC was higher than ODC (mean of the differences = 2.52) and generally more variable. ODC significantly decreased radially and longitudinally. FDC was significantly affected by thinning, where heavy treatments resulted in the highest FDC amounts compared to medium, light, and control treatments. In addition to reducing carbon content (CC), drying influences wood CC in many ways that are still to be elucidated. The results of this study suggest that ODC should continue to be used within the bioenergy industry, while FDC must become the preferred standard for carbon accounting protocols.

Suggested Citation

  • Cyriac S. Mvolo & James D. Stewart & Christopher Helmeste & Ahmed Koubaa, 2021. "Variation of White Spruce Carbon Content with Age, Height, Social Classes and Silvicultural Management," Energies, MDPI, vol. 14(23), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8015-:d:692452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jakob Skovgaard & Sofía Sacks Ferrari & Åsa Knaggård, 2019. "Mapping and clustering the adoption of carbon pricing policies: what polities price carbon and why?," Climate Policy, Taylor & Francis Journals, vol. 19(9), pages 1173-1185, October.
    2. Erol, M. & Haykiri-Acma, H. & Küçükbayrak, S., 2010. "Calorific value estimation of biomass from their proximate analyses data," Renewable Energy, Elsevier, vol. 35(1), pages 170-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cyriac S. Mvolo & Emmanuel A. Boakye & Ahmed Koubaa, 2023. "Chemical Elements Content and Distributions within Different Tissue Types of White Spruce," Energies, MDPI, vol. 16(7), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cyriac S. Mvolo & Emmanuel A. Boakye & Ahmed Koubaa, 2023. "Chemical Elements Content and Distributions within Different Tissue Types of White Spruce," Energies, MDPI, vol. 16(7), pages 1-14, April.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Easwaran Narassimhan & Stefan Koester & Kelly Sims Gallagher, 2022. "Carbon Pricing in the US: Examining State-Level Policy Support and Federal Resistance," Politics and Governance, Cogitatio Press, vol. 10(1), pages 275-289.
    4. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    5. Martin Rabbia, 2023. "Why did Argentina and Uruguay decide to pursue a carbon tax? Fiscal reforms and explicit carbon prices," Review of Policy Research, Policy Studies Organization, vol. 40(2), pages 230-259, March.
    6. Nahar, Gaurav & Rajput, Shailendrasingh & Grasham, Oliver & Dalvi, Vishwanath Haily & Dupont, Valerie & Ross, Andrew B. & Pandit, Aniruddha B., 2022. "Technoeconomic analysis of biogas production using simple and effective mechanistic model calibrated with biomethanation potential experiments of water lettuce (pistia stratiotes) inoculated by buffal," Energy, Elsevier, vol. 244(PB).
    7. Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
    8. Jonas Meckling & Clara Galeazzi & Esther Shears & Tong Xu & Laura Diaz Anadon, 2022. "Energy innovation funding and institutions in major economies," Nature Energy, Nature, vol. 7(9), pages 876-885, September.
    9. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    10. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    11. Ido, Alexander L. & de Luna, Mark Daniel G. & Capareda, Sergio C. & Maglinao, Amado L. & Nam, Hyungseok, 2018. "Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction," Energy, Elsevier, vol. 157(C), pages 949-956.
    12. Vít Pászto & Jarmila Zimmermannová & Jolana Skaličková & Judit Sági, 2020. "Spatial Patterns in Fiscal Impacts of Environmental Taxation in the EU," Economies, MDPI, vol. 8(4), pages 1-18, November.
    13. Justyna Kujawska & Monika Kulisz & Piotr Oleszczuk & Wojciech Cel, 2023. "Improved Prediction of the Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on the Selection of Input Parameters," Energies, MDPI, vol. 16(10), pages 1-16, May.
    14. Yusuf, Abdulfatah Abdu & Inambao, Freddie L., 2020. "Characterization of Ugandan biomass wastes as the potential candidates towards bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    15. D'Orazio, Paola, 2022. "Mapping the emergence and diffusion of climate-related financial policies: Evidence from a cluster analysis on G20 countries," International Economics, Elsevier, vol. 169(C), pages 135-147.
    16. Callejón-Ferre, A.J. & Velázquez-Martí, B. & López-Martínez, J.A. & Manzano-Agugliaro, F., 2011. "Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 948-955, February.
    17. Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
    18. Mislav Kontek & Luka Brezinščak & Vanja Jurišić & Ivan Brandić & Alan Antonović & Božidar Matin & Karlo Špelić & Tajana Krička & Ana Matin, 2023. "Mitigating the Energy Crisis: Utilization of Seed Production Wastes for Energy Production in Continental Croatia," Energies, MDPI, vol. 16(2), pages 1-11, January.
    19. Anna Komarova, 2022. "State Regulation of Energy Transition and Economic Development," Energies, MDPI, vol. 15(12), pages 1-13, June.
    20. Bao Wang & Yujie Li & Jianan Zhou & Yi Wang & Xun Tao & Xiang Zhang & Weiming Song, 2021. "Thermogravimetric and Kinetic Analysis of High-Temperature Thermal Conversion of Pine Wood Sawdust under CO 2 /Ar," Energies, MDPI, vol. 14(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8015-:d:692452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.