IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7957-d690316.html
   My bibliography  Save this article

A Steady State Model for Burning Coal Mine Methane in a Reverse Flow Burner

Author

Listed:
  • Jinsheng Lv

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

  • Junrui Shi

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

  • Mingming Mao

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

  • Xiangjin Kong

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

  • Dan Zhou

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

Abstract

In this study, a steady state model for burning of coal mine methane in a Reverse Flow Burner (RFB) with full kinetics was developed by analogy of a steady counter-flow reactor, and the developed model was used for quick prediction of the lean combustibility limit (LCL). The model was successfully validated with experimental and numerical results, and it was shown that the developed model has excellent accuracy and computational efficiency. Good agreement between the predicted temperature, LCL, and the experiments was observed. The LCL of the equivalence ratio of 0.022 for methane/air mixture was obtained by the developed model. The model was then used to evaluate LCL for the RFB, focusing on the effect of heat loss and burner length on LCL. This indicated that the computational time using the developed model can be reduced by a factor of 1560 compared to the complete transient model.

Suggested Citation

  • Jinsheng Lv & Junrui Shi & Mingming Mao & Xiangjin Kong & Dan Zhou, 2021. "A Steady State Model for Burning Coal Mine Methane in a Reverse Flow Burner," Energies, MDPI, vol. 14(23), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7957-:d:690316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Fuqiang & Wen, Zhi & Dong, Zhiyong & Wang, Enyu & Liu, Xunliang, 2017. "Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation," Energy, Elsevier, vol. 119(C), pages 497-503.
    2. Gosiewski, Krzysztof & Pawlaczyk, Anna & Jaschik, Manfred, 2015. "Energy recovery from ventilation air methane via reverse-flow reactors," Energy, Elsevier, vol. 92(P1), pages 13-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong-Wei Shi & Hai-Peng Wang, 2023. "Research on Full Premixed Combustion and Emission Characteristics of Non-Electric Gas Boiler," Energies, MDPI, vol. 16(21), pages 1-28, November.
    2. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Wang, Guanqing & Tang, Pengbo & Li, Yuan & Xu, Jiangrong & Durst, Franz, 2019. "Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner," Energy, Elsevier, vol. 170(C), pages 1279-1288.
    4. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    5. Bo Lan & Peng-Fei Gao & You-Rong Li & Jia-Jia Yu & Peng-Cheng Li, 2022. "Numerical Simulation and Theoretical Analysis of Flow Resistance Characteristics in the Honeycomb Ceramic Conduit," Energies, MDPI, vol. 15(19), pages 1-14, October.
    6. Yang, Li & Cao, Yunqi & Jia, Zhixuan & Liu, Fang & Song, Zhengchang, 2023. "Properties and mechanisms of low concentration methane catalytic combustion in porous media supported with transition metal oxides," Applied Energy, Elsevier, vol. 350(C).
    7. Ling, Zhongqian & Lu, Ling & Zeng, Xianyang & Kuang, Min & Ling, Bo & Gao, Chuanji & Zhou, Chao, 2023. "Ethylene combustion performance with varying the N2 content in a porous burner," Energy, Elsevier, vol. 262(PA).
    8. Nerijus Striūgas & Rolandas Paulauskas & Raminta Skvorčinskienė & Aurimas Lisauskas, 2020. "Investigation of Waste Biogas Flame Stability Under Oxygen or Hydrogen-Enriched Conditions," Energies, MDPI, vol. 13(18), pages 1-16, September.
    9. Long Zhang & Shanshan Zhang & Hua Zhou & Zhuyin Ren & Hongchuan Wang & Xiuxun Wang, 2022. "Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges," Energies, MDPI, vol. 15(23), pages 1-14, December.
    10. Liu, Fengguo & Zheng, Longfeng & Zhang, Rui, 2020. "Emissions and thermal efficiency for premixed burners in a condensing gas boiler," Energy, Elsevier, vol. 202(C).
    11. Bo Lan & You-Rong Li & Xu-Sheng Zhao & Jian-Dong Kang, 2018. "Industrial-Scale Experimental Study on the Thermal Oxidation of Ventilation Air Methane and the Heat Recovery in a Multibed Thermal Flow-Reversal Reactor," Energies, MDPI, vol. 11(6), pages 1-13, June.
    12. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7957-:d:690316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.