IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037927.html
   My bibliography  Save this article

High-resolution dynamic characteristics of thermal wave in porous media burners with low-concentration methane

Author

Listed:
  • Wang, Yue
  • Chen, Xinjian
  • Ji, Huaijun
  • Li, Tianyi
  • Li, Junwei

Abstract

Thermal flow reverse reactor can realize stable oxidation and heat release of low-concentration coal mine methane, while the dynamic characteristics of thermal wave warrant further investigation. In this work, the temperature field of porous media with a high spatio-temporal resolution was obtained in an optically accessible burner using a short-wave infrared camera (SWIR). The effects of operating conditions and structural parameters on the thermal waves were investigated experimentally. The results indicate that SWIR thermometry is more accurate than long-wave infrared thermometry (LWIR) and thermocouples in measuring the temperature of thermal wave. The ability of porous media to broaden the flammability limit is better at pore diameter Dp = 2.3 mm than that at Dp = 1.7 mm and Dp = 3.4 mm. The large flow velocity enhances the stability of the thermal wave and increases the speed of the thermal wave. The average temperature and maximum temperature of thermal wave are positively related to the equivalence ratio, with the maximum temperature rising from 889 °C to 925 °C when the equivalent ratio increases from 0.40 to 0.6. The acquisition of the comprehensive characteristics of thermal wave can help to improve the combustion stability of low-concentration methane and further extend the lean flammability limit.

Suggested Citation

  • Wang, Yue & Chen, Xinjian & Ji, Huaijun & Li, Tianyi & Li, Junwei, 2024. "High-resolution dynamic characteristics of thermal wave in porous media burners with low-concentration methane," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037927
    DOI: 10.1016/j.energy.2024.134014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keramiotis, Christos & Stelzner, Björn & Trimis, Dimosthenis & Founti, Maria, 2012. "Porous burners for low emission combustion: An experimental investigation," Energy, Elsevier, vol. 45(1), pages 213-219.
    2. Ghorashi, Seyed Amin & Hashemi, Seyed Abdolmehdi & Hashemi, Seyed Mohammad & Mollamahdi, Mahdi, 2018. "Experimental study on pollutant emissions in the novel combined porous-free flame burner," Energy, Elsevier, vol. 162(C), pages 517-525.
    3. Song, Fuqiang & Wen, Zhi & Dong, Zhiyong & Wang, Enyu & Liu, Xunliang, 2017. "Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation," Energy, Elsevier, vol. 119(C), pages 497-503.
    4. Bo Lan & You-Rong Li & Xu-Sheng Zhao & Jian-Dong Kang, 2018. "Industrial-Scale Experimental Study on the Thermal Oxidation of Ventilation Air Methane and the Heat Recovery in a Multibed Thermal Flow-Reversal Reactor," Energies, MDPI, vol. 11(6), pages 1-13, June.
    5. Wu, Zhiyong & Caliot, Cyril & Bai, Fengwu & Flamant, Gilles & Wang, Zhifeng & Zhang, Jinsong & Tian, Chong, 2010. "Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications," Applied Energy, Elsevier, vol. 87(2), pages 504-513, February.
    6. Wang, Guanqing & Tang, Pengbo & Li, Yuan & Xu, Jiangrong & Durst, Franz, 2019. "Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner," Energy, Elsevier, vol. 170(C), pages 1279-1288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    2. Wang, Guanqing & Tang, Pengbo & Li, Yuan & Xu, Jiangrong & Durst, Franz, 2019. "Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner," Energy, Elsevier, vol. 170(C), pages 1279-1288.
    3. Zangeneh, Vahid & Alipoor, Alireza, 2021. "Stability study of hydrogen-air flame in a conical porous burner," Energy, Elsevier, vol. 215(PB).
    4. Shi, Junrui & Zhou, Dan & Lv, Jinsheng & Mao, Mingming & Ma, Xiaozhong, 2024. "Self-sustained stable combustion of off-gas from Solid Oxide Fuel Cell in a cone-shaped porous burner with preheaters," Energy, Elsevier, vol. 312(C).
    5. Liu, Fengguo & Zheng, Longfeng & Zhang, Rui, 2020. "Emissions and thermal efficiency for premixed burners in a condensing gas boiler," Energy, Elsevier, vol. 202(C).
    6. Vásquez, Daniela & Maya, Juan C. & Manrique, Raiza & Ceballos, Carlos & Chejne, Farid, 2020. "Development of a low-temperature water heating system based on the combustion of CH4 in porous-media," Energy, Elsevier, vol. 209(C).
    7. Ling, Zhongqian & Lu, Ling & Zeng, Xianyang & Kuang, Min & Ling, Bo & Gao, Chuanji & Zhou, Chao, 2023. "Ethylene combustion performance with varying the N2 content in a porous burner," Energy, Elsevier, vol. 262(PA).
    8. Nerijus Striūgas & Rolandas Paulauskas & Raminta Skvorčinskienė & Aurimas Lisauskas, 2020. "Investigation of Waste Biogas Flame Stability Under Oxygen or Hydrogen-Enriched Conditions," Energies, MDPI, vol. 13(18), pages 1-16, September.
    9. Zhang, Shengchun & Wang, Zhifeng & Wu, Zhiyong & Bai, Fengwu & Huang, Pingrui, 2019. "Numerical investigation of the heat transport in a very loose packed granular bed air receiver with a non-uniform energy flux distribution," Renewable Energy, Elsevier, vol. 138(C), pages 987-998.
    10. Jerzy Hapanowicz & Adriana Szydłowska & Jacek Wydrych, 2022. "Experimental and Prenemilary Numerical Evaluation of Pressure Drops under the Conditions of the Stratified Gas-Liquid Flow in a Horizontal Pipe Filled with Metal Foam," Energies, MDPI, vol. 15(23), pages 1-22, November.
    11. Neber, Matthew & Lee, Hohyun, 2012. "Design of a high temperature cavity receiver for residential scale concentrated solar power," Energy, Elsevier, vol. 47(1), pages 481-487.
    12. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    13. Carlos E. Arreola-Ramos & Omar Álvarez-Brito & Juan Daniel Macías & Aldo Javier Guadarrama-Mendoza & Manuel A. Ramírez-Cabrera & Armando Rojas-Morin & Patricio J. Valadés-Pelayo & Heidi Isabel Villafá, 2021. "Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters," Energies, MDPI, vol. 14(9), pages 1-15, April.
    14. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
    15. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    16. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    17. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    18. Roldán, M.I. & Smirnova, O. & Fend, T. & Casas, J.L. & Zarza, E., 2014. "Thermal analysis and design of a volumetric solar absorber depending on the porosity," Renewable Energy, Elsevier, vol. 62(C), pages 116-128.
    19. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications," Applied Energy, Elsevier, vol. 179(C), pages 1081-1096.
    20. Jia Li & Ming-Ming Mao & Min Gao & Qiang Chen & Jun-Rui Shi & Yong-Qi Liu, 2022. "A Multi-Scale Numerical Model for Investigation of Flame Dynamics in a Thermal Flow Reversal Reactor," Energies, MDPI, vol. 15(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.