IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7874-d686629.html
   My bibliography  Save this article

Wind Tunnel Experiments on Interaction between Two Closely Spaced Vertical-Axis Wind Turbines in Side-by-Side Arrangement

Author

Listed:
  • Yoshifumi Jodai

    (Department of Mechanical Engineering, Kagawa National Institute of Technology (KOSEN), Kagawa College, 355 Chokushi, Takamatsu 761-8058, Japan)

  • Yutaka Hara

    (Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan)

Abstract

This study aimed to determine the optimal rotor spacing of two vertical-axis wind turbines, which are simulated by miniature models arranged side-by-side with a relatively low aspect ratio. Wind tunnel experiments with a pair of 3-D printed model rotors were conducted at a uniform velocity. A series of experiments were conducted involving both incremental adjustments to the rotor gaps, g , and the rotational direction of each rotor. Increases in the power and the related flow patterns were observed in all three arrangements: Co-Rotating (CO), Counter-Up (CU), and Counter-Down (CD). The maximum phase-synchronized rotational speed occurs at the narrowest gap in the CD arrangement. Meanwhile, local maxima arise in the CO and CU arrangements at g / D < 1, where D is the rotor diameter. From an engineering perspective, the optimal rotor spacing is g / D = 0.2 with the CO arrangement, using the same two rotors rotating in the same direction. Based on flow visualization using a smoke-wire method at a narrower gap opening of 0.2 D , the wake width in the case of the CU arrangement was remarkably narrower than those obtained in the CO and CD arrangements. In the CU arrangement, a movement towards the center of the rotor pair of the nominal front-stagnation point of each rotor was confirmed via flow visualization. This finding explains a reduction tendency in the rotational speed of the rotors via a reduction in the lift in the CU arrangement.

Suggested Citation

  • Yoshifumi Jodai & Yutaka Hara, 2021. "Wind Tunnel Experiments on Interaction between Two Closely Spaced Vertical-Axis Wind Turbines in Side-by-Side Arrangement," Energies, MDPI, vol. 14(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7874-:d:686629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, H.-D. & Zheng, X.Y. & Zhao, S.X., 2020. "Arrangement of clustered straight-bladed wind turbines," Energy, Elsevier, vol. 200(C).
    2. Zanforlin, Stefania & Nishino, Takafumi, 2016. "Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines," Renewable Energy, Elsevier, vol. 99(C), pages 1213-1226.
    3. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    4. Ahmadi-Baloutaki, Mojtaba & Carriveau, Rupp & Ting, David S-K., 2016. "A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations," Renewable Energy, Elsevier, vol. 96(PA), pages 904-913.
    5. Yutaka Hara & Yoshifumi Jodai & Tomoyuki Okinaga & Masaru Furukawa, 2021. "Numerical Analysis of the Dynamic Interaction between Two Closely Spaced Vertical-Axis Wind Turbines," Energies, MDPI, vol. 14(8), pages 1-23, April.
    6. Shigetomi, Akinari & Murai, Yuichi & Tasaka, Yuji & Takeda, Yasushi, 2011. "Interactive flow field around two Savonius turbines," Renewable Energy, Elsevier, vol. 36(2), pages 536-545.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masaru Furukawa & Yutaka Hara & Yoshifumi Jodai, 2022. "Analytical Model for Phase Synchronization of a Pair of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 15(11), pages 1-19, June.
    2. Jirarote Buranarote & Yutaka Hara & Masaru Furukawa & Yoshifumi Jodai, 2022. "Method to Predict Outputs of Two-Dimensional VAWT Rotors by Using Wake Model Mimicking the CFD-Created Flow Field," Energies, MDPI, vol. 15(14), pages 1-29, July.
    3. Yoshifumi Jodai & Yutaka Hara, 2023. "Wind-Tunnel Experiments on the Interactions among a Pair/Trio of Closely Spaced Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(3), pages 1-27, January.
    4. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.
    2. Yoshifumi Jodai & Yutaka Hara, 2023. "Wind-Tunnel Experiments on the Interactions among a Pair/Trio of Closely Spaced Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(3), pages 1-27, January.
    3. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    4. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    5. Masaru Furukawa & Yutaka Hara & Yoshifumi Jodai, 2022. "Analytical Model for Phase Synchronization of a Pair of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 15(11), pages 1-19, June.
    6. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Jeffrey E. Silva & Louis Angelo M. Danao, 2021. "Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance," Energies, MDPI, vol. 14(6), pages 1-22, March.
    8. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    9. Ian D. Brownstein & Nathaniel J. Wei & John O. Dabiri, 2019. "Aerodynamically Interacting Vertical-Axis Wind Turbines: Performance Enhancement and Three-Dimensional Flow," Energies, MDPI, vol. 12(14), pages 1-23, July.
    10. Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
    11. Jiang, Yichen & Liu, Shijie & Zao, Peidong & Yu, Yanwei & Zou, Li & Liu, Liqin & Li, Jiawen, 2022. "Experimental evaluation of a tree-shaped quad-rotor wind turbine on power output controllability and survival shutdown capability," Applied Energy, Elsevier, vol. 309(C).
    12. Manuel Viqueira-Moreira & Esteban Ferrer, 2020. "Insights into the Aeroacoustic Noise Generation for Vertical Axis Turbines in Close Proximity," Energies, MDPI, vol. 13(16), pages 1-18, August.
    13. Vergaerde, Antoine & De Troyer, Tim & Standaert, Lieven & Kluczewska-Bordier, Joanna & Pitance, Denis & Immas, Alexandre & Silvert, Frédéric & Runacres, Mark C., 2020. "Experimental validation of the power enhancement of a pair of vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 181-187.
    14. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    15. Ni, Lulu & Miao, Weipao & Li, Chun & Liu, Qingsong, 2021. "Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations," Energy, Elsevier, vol. 215(PA).
    16. Chen, Wei-Hsin & Chen, Ching-Ying & Huang, Chun-Yen & Hwang, Chii-Jong, 2017. "Power output analysis and optimization of two straight-bladed vertical-axis wind turbines," Applied Energy, Elsevier, vol. 185(P1), pages 223-232.
    17. Chloë Dorge & Eric Louis Bibeau, 2023. "Deep Learning-Based Prediction of Unsteady Reynolds-Averaged Navier-Stokes Solutions for Vertical-Axis Turbines," Energies, MDPI, vol. 16(3), pages 1-33, January.
    18. Jirarote Buranarote & Yutaka Hara & Masaru Furukawa & Yoshifumi Jodai, 2022. "Method to Predict Outputs of Two-Dimensional VAWT Rotors by Using Wake Model Mimicking the CFD-Created Flow Field," Energies, MDPI, vol. 15(14), pages 1-29, July.
    19. Zheng, H.-D. & Zheng, X.Y. & Zhao, S.X., 2020. "Arrangement of clustered straight-bladed wind turbines," Energy, Elsevier, vol. 200(C).
    20. Lin Pan & Ze Zhu & Haodong Xiao & Leichong Wang, 2021. "Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(19), pages 1-29, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7874-:d:686629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.