IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp1213-1226.html

Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines

Author

Listed:
  • Zanforlin, Stefania
  • Nishino, Takafumi

Abstract

We present a comprehensive set of two-dimensional (2D) unsteady Reynolds-averaged Navier-Stokes (URANS) simulations of flow around a pair of counter-rotating vertical-axis wind turbines (VAWTs). The simulations are performed for two possible configurations of the counter-rotating VAWT pair, with various gaps between the two turbines, tip-speed-ratios and wind directions, in order to identify key flow mechanisms contributing to the enhanced performance of a pair of turbines compared to an isolated turbine. One of the key mechanisms identified, for the case of two turbines arrayed side-by-side with respect to the incoming wind, is the change of lateral velocity in the upwind path of each turbine due to the presence of the neighbouring turbine, making the direction of local flow approaching the turbine blade more favourable to generate lift and torque. The results also show that the total power of a staggered pair of turbines cannot surpass that of a side-by-side pair of turbines. Some implications of the present results for the prediction of the performance of single and multiple rows (or a farm) of VAWTs are also discussed. The local flow mechanisms identified in the present study are expected to be of great importance when the size of the farm is relatively small.

Suggested Citation

  • Zanforlin, Stefania & Nishino, Takafumi, 2016. "Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines," Renewable Energy, Elsevier, vol. 99(C), pages 1213-1226.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1213-1226
    DOI: 10.1016/j.renene.2016.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116307169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    2. Hao, Wenxing & Abdi, Abdulshakur & Zhang, Lihui & Li, Chun & Wu, Fuzhong & Mao, Qianyu, 2024. "Performance and mechanism of adaptive pitch control in a floating vertical axis wind turbine with a surge motion," Energy, Elsevier, vol. 308(C).
    3. Francesco Balduzzi & Marco Zini & Andreu Carbó Molina & Gianni Bartoli & Tim De Troyer & Mark C. Runacres & Giovanni Ferrara & Alessandro Bianchini, 2020. "Understanding the Aerodynamic Behavior and Energy Conversion Capability of Small Darrieus Vertical Axis Wind Turbines in Turbulent Flows," Energies, MDPI, vol. 13(11), pages 1-15, June.
    4. Syawitri, T.P. & Yao, Y.F. & Chandra, B. & Yao, J., 2021. "Comparison study of URANS and hybrid RANS-LES models on predicting vertical axis wind turbine performance at low, medium and high tip speed ratio ranges," Renewable Energy, Elsevier, vol. 168(C), pages 247-269.
    5. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    6. Aya Aihara & Victor Mendoza & Anders Goude & Hans Bernhoff, 2022. "Comparison of Three-Dimensional Numerical Methods for Modeling of Strut Effect on the Performance of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(7), pages 1-21, March.
    7. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    8. Rosario Lanzafame & Stefano Mauro & Michele Messina & Sebastian Brusca, 2020. "Development and Validation of CFD 2D Models for the Simulation of Micro H-Darrieus Turbines Subjected to High Boundary Layer Instabilities," Energies, MDPI, vol. 13(21), pages 1-23, October.
    9. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    10. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    11. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    12. Leidy Tatiana Contreras & Omar Dario Lopez & Santiago Lain, 2018. "Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine," Energies, MDPI, vol. 11(11), pages 1-23, November.
    13. Peng, H.Y. & Chou, Q. & Sun, S.Y. & Lam, H.F. & Liu, H.J., 2025. "Improving performance of twin counter-rotating vertical axis wind turbines under turbulent conditions: an integrated study using Taguchi method and large eddy simulation," Energy, Elsevier, vol. 333(C).
    14. Poguluri, Sunny Kumar & Lee, Hyebin & Bae, Yoon Hyeok, 2021. "An investigation on the aerodynamic performance of a co-axial contra-rotating vertical-axis wind turbine," Energy, Elsevier, vol. 219(C).
    15. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    16. Xu, Wenhao & Li, Gaohua & Zheng, Xiaobo & Li, Ye & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building," Renewable Energy, Elsevier, vol. 177(C), pages 461-474.
    17. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    18. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).
    19. Dong, Zhikun & Chen, Yaoran & Zhou, Dai & Su, Jie & Han, Zhaolong & Cao, Yong & Bao, Yan & Zhao, Feng & Wang, Rui & Zhao, Yongsheng & Xu, Yuwang, 2022. "The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method," Energy, Elsevier, vol. 239(PE).
    20. Piotr Wiśniewski & Francesco Balduzzi & Zbigniew Buliński & Alessandro Bianchini, 2020. "Numerical Analysis on the Effectiveness of Gurney Flaps as Power Augmentation Devices for Airfoils Subject to a Continuous Variation of the Angle of Attack by Use of Full and Surrogate Models," Energies, MDPI, vol. 13(8), pages 1-25, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1213-1226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.