IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7674-d680609.html
   My bibliography  Save this article

Statistical Feature Extraction Combined with Generalized Discriminant Component Analysis Driven SVM for Fault Diagnosis of HVDC GIS

Author

Listed:
  • Ruixu Zhou

    (State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Wensheng Gao

    (State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Weidong Liu

    (State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Dengwei Ding

    (Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China)

  • Bowen Zhang

    (China Electric Power Research Institute, Beijing 100192, China)

Abstract

Accurately identifying the types of insulation defects inside a gas-insulated switchgear (GIS) is of great significance for guiding maintenance work as well as ensuring the safe and stable operation of GIS. By building a set of 220 kV high-voltage direct current (HVDC) GIS experiment platforms and manufacturing four different types of insulation defects (including multiple sizes and positions), 180,828 pulse current signals under multiple voltage levels are successfully measured. Then, the apparent discharge quantity and the discharge time, two inherent physical quantities unaffected by the experimental platform and measurement system, are obtained after the pulse current signal is denoised, according to which 70 statistical features are extracted. In this paper, a pattern recognition method based on generalized discriminant component analysis driven support vector machine (SVM) is detailed and the corresponding selection criterion of involved parameters is established. The results show that the newly proposed pattern recognition method greatly improves the recognition accuracy of fault diagnosis in comparison with 36 kinds of state-of-the-art dimensionality reduction algorithms and 44 kinds of state-of-the-art classifiers. This newly proposed method not only solves the difficulty that phase-resolved partial discharge (PRPD) cannot be applied under DC condition but also immensely facilitates the fault diagnosis of HVDC GIS.

Suggested Citation

  • Ruixu Zhou & Wensheng Gao & Weidong Liu & Dengwei Ding & Bowen Zhang, 2021. "Statistical Feature Extraction Combined with Generalized Discriminant Component Analysis Driven SVM for Fault Diagnosis of HVDC GIS," Energies, MDPI, vol. 14(22), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7674-:d:680609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    2. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    2. Giovanna Boccuzzo & Licia Maron, 2017. "Proposal of a composite indicator of job quality based on a measure of weighted distances," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2357-2374, September.
    3. Busch, Christin & Specht, Kathrin & Inostroza, Luis & Falke, Matthias & Zepp, Harald, 2024. "Disentangling cultural ecosystem services co-production in urban green spaces through social media reviews," Ecosystem Services, Elsevier, vol. 70(C).
    4. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    5. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    6. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    7. Ivan Mihál & Eva Luptáková & Martin Pavlík, 2021. "Wood-inhabiting macromycete communities in spruce stands on former agricultural land," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(2), pages 51-65.
    8. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    9. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    10. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    11. Marie Diekmann & Ludwig Theuvsen, 2019. "Value structures determining community supported agriculture: insights from Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(4), pages 733-746, December.
    12. D. V. Pahan Prasada, 2013. "Domestic versus Multilateral Institutions in Bilateral Trade: A Comparative Gravity Analysis," International Economic Journal, Taylor & Francis Journals, vol. 27(1), pages 127-142, March.
    13. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    14. Malcolm Dow & Peter Willett & Roderick McDonald & Belver Griffith & Michael Greenacre & Peter Bryant & Daniel Wartenberg & Ove Frank, 1987. "Book reviews," Journal of Classification, Springer;The Classification Society, vol. 4(2), pages 245-278, September.
    15. Mark Davison, 1988. "A reformulation of the general Euclidean model for the external analysis of preference data," Psychometrika, Springer;The Psychometric Society, vol. 53(3), pages 305-320, September.
    16. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    17. Enrico di Bella & Matteo Corsi & Lucia Leporatti, 2015. "A Multi-indicator Approach for Smart Security Policy Making," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 122(3), pages 653-675, July.
    18. Willem Heiser, 1991. "A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 7-27, March.
    19. Pietro Lovaglio & Mario Mezzanzanica, 2013. "Classification of longitudinal career paths," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 989-1008, February.
    20. Geert Soete & Willem Heiser, 1993. "A latent class unfolding model for analyzing single stimulus preference ratings," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 545-565, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7674-:d:680609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.