IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7601-d678689.html
   My bibliography  Save this article

Experimental Study on Hydroelectric Energy Harvester Based on a Hybrid Qiqi and Turbine Structure

Author

Listed:
  • Bin Bao

    (Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
    Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China)

  • Quan Wang

    (Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
    Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China)

  • Yufei Wu

    (Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China)

  • Pengda Li

    (Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China)

Abstract

The Qiqi structure design can automatically upset and spill its content once it arrives at limit capacity under vertical water flow excitation. Considering this function, the Qiqi structure has been utilized for small hydroelectric energy harvesting lately. To investigate the tradeoff between the Qiqi structure and the turbine structure for small hydroelectric energy harvesting, an energy harvester based on a hybrid Qiqi and turbine structure is proposed for vertical water flow hydroelectric applications. The hybrid structure is composed of a rectangular Qiqi structure, with two blades inserted on both sides. Self-tipping function of the hybrid Qiqi structure and working principle of the structure is investigated in detail. The proposed structure has both the advantages of low flow velocity energy harvesting of the Qiqi structure and high flow velocity energy harvesting of the turbine structure. A hydroelectric energy harvesting application using the hybrid structure is given to demonstrate that the hybrid structure had a higher rotational speed than the Qiqi structure under vertical low water flow excitation and was able to work at relatively high flow rates. Thus, the investigated hybrid structure can help small rotational hydropower achieve better energy harvesting performance and work at wide-range flow rates under vertical ultra-low water flow applications. At 600 mL/min, 902 μJ of electrical energy was charged by the investigated structure, which is six times higher than that using the Qiqi structure alone.

Suggested Citation

  • Bin Bao & Quan Wang & Yufei Wu & Pengda Li, 2021. "Experimental Study on Hydroelectric Energy Harvester Based on a Hybrid Qiqi and Turbine Structure," Energies, MDPI, vol. 14(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7601-:d:678689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7601/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7601/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    2. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    3. Badhurshah, Rameez & Dudhgaonkar, Prasad & Jalihal, Purnima & Samad, Abdus, 2018. "High efficiency design of an impulse turbine used in oscillating water column to harvest wave energy," Renewable Energy, Elsevier, vol. 121(C), pages 344-354.
    4. Ma, Penglei & Liu, Guijie & Wang, Honghui & Wang, Yong & Xie, Yudong, 2021. "Co-simulations of a semi-passive oscillating foil turbine using a hydraulic system," Energy, Elsevier, vol. 217(C).
    5. Pustina, L. & Lugni, C. & Bernardini, G. & Serafini, J. & Gennaretti, M., 2020. "Control of power generated by a floating offshore wind turbine perturbed by sea waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    2. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    3. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    4. Mahmood Al-Riyami & Issam Bahadur & Hassen Ouakad, 2022. "There Is Plenty of Room inside a Bluff Body: A Hybrid Piezoelectric and Electromagnetic Wind Energy Harvester," Energies, MDPI, vol. 15(16), pages 1-21, August.
    5. Zhang, Jingyu & Li, Xuefeng & Li, Renfu & Dai, Lu & Wang, Wei & Yang, Kai, 2021. "Internal resonance of a two-degree-of-freedom tuned bistable electromagnetic actuator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    7. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    8. Sajib Roy & Md Humayun Kabir & Md Salauddin & Miah A. Halim, 2022. "An Electromagnetic Wind Energy Harvester Based on Rotational Magnet Pole-Pairs for Autonomous IoT Applications," Energies, MDPI, vol. 15(15), pages 1-14, August.
    9. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    10. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    11. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    12. Moussavi, S. Abolfazl & Ghaznavi, Aidin, 2021. "Effect of boundary layer suction on performance of a 2 MW wind turbine," Energy, Elsevier, vol. 232(C).
    13. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Yurchenko, Daniil & Wolszczak, Piotr & Dymarek, Andrzej & Dzitkowski, Tomasz, 2023. "Influence of the configuration of elastic and dissipative elements on the energy harvesting efficiency of a tunnel effect energy harvester," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Hasan Hamdan & Sharul Sham Dol & Abdelrahman Hosny Gomaa & Aghyad Belal Al Tahhan & Ahmad Al Ramahi & Haya Fares Turkmani & Mohammad Alkhedher & Rahaf Ajaj, 2023. "Experimental and Numerical Study of Novel Vortex Bladeless Wind Turbine with an Economic Feasibility Analysis and Investigation of Environmental Benefits," Energies, MDPI, vol. 17(1), pages 1-30, December.
    15. Zhang, Yongkuang & Feng, Yongjun & Chen, Weixing & Gao, Feng, 2022. "Effect of pivot location on the semi-active flapping hydrofoil propulsion for wave glider from wave energy extraction," Energy, Elsevier, vol. 255(C).
    16. Bouma, A. & Le, E. & Vasconcellos, R. & Abdelkefi, A., 2022. "Effective design and characterization of flutter-based piezoelectric energy harvesters with discontinuous nonlinearities," Energy, Elsevier, vol. 238(PA).
    17. Yongyao Luo & Alexandre Presas & Zhengwei Wang, 2019. "Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion," Energies, MDPI, vol. 12(5), pages 1-12, March.
    18. Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
    19. Arabgolarcheh, Alireza & Jannesarahmadi, Sahar & Benini, Ernesto, 2022. "Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method," Renewable Energy, Elsevier, vol. 185(C), pages 871-887.
    20. Kan, Junwu & Wang, Jin & Wu, Yaqi & Chen, Song & Wang, Shuyun & Jiang, Yonghua & Zhang, Zhonghua, 2022. "Energy harvesting from wind by an axially retractable bracket-shaped piezoelectric vibrator excited by magnetic force," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7601-:d:678689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.