IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7235-d670899.html
   My bibliography  Save this article

Valorization of Distillery Stillage for Bioenergy Production: A Review

Author

Listed:
  • Magdalena Zielińska

    (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland)

  • Katarzyna Bułkowska

    (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland)

  • Wioleta Mikucka

    (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland)

Abstract

In alcohol distilleries, the amount of distillery stillage generated can be up to 15 times larger than the amount of alcohol produced. The stillage has high concentrations of organics and nitrogen, a low pH, and a dark brown color. Currently, stillage is mainly used for soil fertilization. For this purpose, it requires thickening and is used seasonally, which creates storage problems and transport costs. To reduce environmental pollution, physicochemical and biological processes have been employed for the treatment of distillery stillage. However, according to bioeconomy principles, the stillage should be transformed into value-added products. Therefore, this review paper focuses on methods of stillage processing that enable energy recovery. Due to its high content of organic compounds, stillage is often used as a raw material for biogas production. Accordingly, anaerobic digestion of stillage is discussed, including an overview of the bioreactors used and the effects of operational parameters on organics removal and biogas production. The necessity of integrating anaerobic stillage treatment with other treatment processes is presented. As complex compounds that are present in the stillage (mainly polyphenols and melanoidin) are difficult to biodegrade and have antibacterial activities, the effect of their recovery on biogas production is described. Next, the possibility of converting distillery stillage to bioethanol and biohydrogen is presented. In addition, bioelectrochemical treatment of distillery stillage using microbial fuel cells is discussed. For all these treatment methods, current challenges and opportunities are given.

Suggested Citation

  • Magdalena Zielińska & Katarzyna Bułkowska & Wioleta Mikucka, 2021. "Valorization of Distillery Stillage for Bioenergy Production: A Review," Energies, MDPI, vol. 14(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7235-:d:670899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joanna K. Huertas & Lawrence Quipuzco & Amro Hassanein & Stephanie Lansing, 2020. "Comparing Hydrogen Sulfide Removal Efficiency in a Field-Scale Digester Using Microaeration and Iron Filters," Energies, MDPI, vol. 13(18), pages 1-14, September.
    2. Mohanakrishna, G. & Krishna Mohan, S. & Venkata Mohan, S., 2012. "Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: Evaluation with real field wastewater," Applied Energy, Elsevier, vol. 95(C), pages 31-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Camilo Solarte-Toro & Carlos Ariel Cardona Alzate, 2023. "Sustainability of Biorefineries: Challenges and Perspectives," Energies, MDPI, vol. 16(9), pages 1-24, April.
    2. Agata Bartkowiak & Joanna Lemanowicz & Magdalena Rydlewska & Olga Drabińska & Karol Ewert, 2022. "Enzymatic Activity of Soil after Applications Distillery Stillage," Agriculture, MDPI, vol. 12(5), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
    2. Modestra, J. Annie & Chiranjeevi, P. & Mohan, S. Venkata, 2016. "Cathodic material effect on electron acceptance towards bioelectricity generation and wastewater treatment," Renewable Energy, Elsevier, vol. 98(C), pages 178-187.
    3. Modestra, J. Annie & Reddy, C. Nagendranatha & Krishna, K. Vamshi & Min, Booki & Mohan, S. Venkata, 2020. "Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell," Renewable Energy, Elsevier, vol. 149(C), pages 424-434.
    4. Venkata Mohan, S. & Velvizhi, G. & Annie Modestra, J. & Srikanth, S., 2014. "Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 779-797.
    5. Fang, Fang & Zang, Guo-Long & Sun, Min & Yu, Han-Qing, 2013. "Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach," Applied Energy, Elsevier, vol. 110(C), pages 98-103.
    6. Chen, Yinguang & Luo, Jingyang & Yan, Yuanyuan & Feng, Leiyu, 2013. "Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells," Applied Energy, Elsevier, vol. 102(C), pages 1197-1204.
    7. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    8. Butti, Sai Kishore & Velvizhi, G. & Sulonen, Mira L.K. & Haavisto, Johanna M. & Oguz Koroglu, Emre & Yusuf Cetinkaya, Afsin & Singh, Surya & Arya, Divyanshu & Annie Modestra, J. & Vamsi Krishna, K. & , 2016. "Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 462-476.
    9. Nikhil, G.N. & Venkata Subhash, G. & Yeruva, Dileep Kumar & Venkata Mohan, S., 2015. "Synergistic yield of dual energy forms through biocatalyzed electrofermentation of waste: Stoichiometric analysis of electron and carbon distribution," Energy, Elsevier, vol. 88(C), pages 281-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7235-:d:670899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.