Modeling of a CO 2 -Based Integrated Refrigeration System for Supermarkets
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Paride Gullo & Armin Hafner & Krzysztof Banasiak & Silvia Minetto & Ekaterini E. Kriezi, 2019. "Multi-Ejector Concept: A Comprehensive Review on its Latest Technological Developments," Energies, MDPI, vol. 12(3), pages 1-29, January.
- Gullo, Paride & Tsamos, Konstantinos M. & Hafner, Armin & Banasiak, Krzysztof & Ge, Yunting T. & Tassou, Savvas A., 2018. "Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study," Energy, Elsevier, vol. 164(C), pages 236-263.
- Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
- Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michał & Madsen, Kenneth B. & Försterling, Sven & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "Performance mapping of the R744 ejectors for refrigeration and air conditioning supermarket application: A hybrid reduced-order model," Energy, Elsevier, vol. 153(C), pages 933-948.
- M. Gräber & K. Kosowski & C. Richter & W. Tegethoff, 2010. "Modelling of heat pumps with an object-oriented model library for thermodynamic systems," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 16(3), pages 195-209, May.
- Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michal & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "System model derivation of the CO2 two-phase ejector based on the CFD-based reduced-order model," Energy, Elsevier, vol. 144(C), pages 941-956.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lawrence Drojetzki & Mieczyslaw Porowski, 2023. "Outdoor Climate as a Decision Variable in the Selection of an Energy-Optimal Refrigeration System Based on Natural Refrigerants for a Supermarket," Energies, MDPI, vol. 16(8), pages 1-24, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
- Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
- Paolo Artuso & Giacomo Tosato & Antonio Rossetti & Sergio Marinetti & Armin Hafner & Krzysztof Banasiak & Silvia Minetto, 2021. "Dynamic Modelling and Validation of an Air-to-Water Reversible R744 Heat Pump for High Energy Demand Buildings," Energies, MDPI, vol. 14(24), pages 1-25, December.
- Palacz, Michal & Haida, Michal & Smolka, Jacek & Plis, Marcin & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "A gas ejector for CO2 supercritical cycles," Energy, Elsevier, vol. 163(C), pages 1207-1216.
- Laura Nebot-Andrés & Daniel Calleja-Anta & Daniel Sánchez & Ramón Cabello & Rodrigo Llopis, 2019. "Thermodynamic Analysis of a CO 2 Refrigeration Cycle with Integrated Mechanical Subcooling," Energies, MDPI, vol. 13(1), pages 1-17, December.
- Ding, Hongbing & Dong, Yuanyuan & Yang, Yan & Wen, Chuang, 2024. "Performance and energy utilization analysis of transcritical CO2 two-phase ejector considering non-equilibrium phase changes," Applied Energy, Elsevier, vol. 372(C).
- Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
- Lixing Zheng & Hongwei Hu & Weibo Wang & Yiyan Zhang & Lingmei Wang, 2022. "Study on Flow Distribution and Structure Optimization in a Mix Chamber and Diffuser of a CO 2 Two-Phase Ejector," Mathematics, MDPI, vol. 10(5), pages 1-16, February.
- Guruchethan, A.M. & Reddy, Y. Siva Kumar & Maiya, M.P. & Hafner, Armin, 2024. "Experimental investigation of multi-ejector CO2 heat pump system with and without IHX," Energy, Elsevier, vol. 297(C).
- Zheng, Ping & Li, Bing & Qin, Jingxuan, 2018. "CFD simulation of two-phase ejector performance influenced by different operation conditions," Energy, Elsevier, vol. 155(C), pages 1129-1145.
- Haida, Michal & Smolka, Jacek & Hafner, Armin & Mastrowski, Mikolaj & Palacz, Michał & Madsen, Kenneth B. & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "Numerical investigation of heat transfer in a CO2 two-phase ejector," Energy, Elsevier, vol. 163(C), pages 682-698.
- Paride Gullo & Armin Hafner & Krzysztof Banasiak, 2019. "Thermodynamic Performance Investigation of Commercial R744 Booster Refrigeration Plants Based on Advanced Exergy Analysis," Energies, MDPI, vol. 12(3), pages 1-24, January.
- Haghparast, Payam & Sorin, Mikhail V. & Nesreddine, Hakim, 2018. "The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle," Energy, Elsevier, vol. 162(C), pages 728-743.
- Lawrence Drojetzki & Mieczyslaw Porowski, 2023. "Outdoor Climate as a Decision Variable in the Selection of an Energy-Optimal Refrigeration System Based on Natural Refrigerants for a Supermarket," Energies, MDPI, vol. 16(8), pages 1-24, April.
- Paride Gullo & Armin Hafner & Krzysztof Banasiak & Silvia Minetto & Ekaterini E. Kriezi, 2019. "Multi-Ejector Concept: A Comprehensive Review on its Latest Technological Developments," Energies, MDPI, vol. 12(3), pages 1-29, January.
- Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michał & Madsen, Kenneth B. & Försterling, Sven & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "Performance mapping of the R744 ejectors for refrigeration and air conditioning supermarket application: A hybrid reduced-order model," Energy, Elsevier, vol. 153(C), pages 933-948.
- Mastrowski, Mikolaj & Smolka, Jacek & Hafner, Armin & Haida, Michal & Palacz, Michal & Banasiak, Krzysztof, 2019. "Experimental study of the heat transfer problem in expansion devices in CO2 refrigeration systems," Energy, Elsevier, vol. 173(C), pages 586-597.
- Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
- Li, Shengyu & Yan, Jia & Liu, Zhan & Yao, Yong & Li, Xianbi & Wen, Na & Zou, Guorong, 2019. "Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks," Energy, Elsevier, vol. 189(C).
- Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
More about this item
Keywords
Modelica; dynamic modeling; energy efficient; CO 2 commercial refrigeration; heat recovery; integrated refrigeration system; R744;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6926-:d:661843. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.