IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i1p209-d474082.html
   My bibliography  Save this article

Finite Element Modelling of a Parabolic Trough Collector for Concentrated Solar Power

Author

Listed:
  • Andrea Gilioli

    (Dipartimento di Meccanica—Politecnico di Milano, via La Masa 1, 20156 Milan, Italy)

  • Francesco Cadini

    (Dipartimento di Meccanica—Politecnico di Milano, via La Masa 1, 20156 Milan, Italy)

  • Luca Abbiati

    (Dipartimento di Meccanica—Politecnico di Milano, via La Masa 1, 20156 Milan, Italy)

  • Giulio Angelo Guido Solero

    (Dipartimento di Energia—Politecnico di Milano, via Lambruschini, 20156 Milan, Italy)

  • Massimo Fossati

    (Dipartimento di Meccanica—Politecnico di Milano, via La Masa 1, 20156 Milan, Italy)

  • Andrea Manes

    (Dipartimento di Meccanica—Politecnico di Milano, via La Masa 1, 20156 Milan, Italy)

  • Lino Carnelli

    (ENI SpA, Renewable Energy & Environmental R&D Center, Istituto ENI Donegani, 28100 Novara, Italy)

  • Carla Lazzari

    (ENI SpA, Renewable Energy & Environmental R&D Center, Istituto ENI Donegani, 28100 Novara, Italy)

  • Stefano Cardamone

    (ENI SpA, Renewable Energy & Environmental R&D Center, Istituto ENI Donegani, 28100 Novara, Italy)

  • Marco Giglio

    (Dipartimento di Meccanica—Politecnico di Milano, via La Masa 1, 20156 Milan, Italy)

Abstract

Nowadays the design of large-scale structures can be effectively improved by the adoption of numerical models. Even if experimental tests still play a fundamental role, a methodological approach that combines experimental testing and modelling technique can significantly improve the understanding of the matter. This, in fact, would result in a more reliable optimization process, drastically reducing efforts and uncertainties towards the implementation of the final product. The present work deals with the development of a finite element model for the analysis of a full-scale prototype of an innovative parabolic trough collector. The collector is analysed under several load conditions in order to evaluate its structural behaviour. Each load configuration is also numerically reproduced. Moreover, it is demonstrated that the model is capable of reproducing both the global (stiffness) and local (strain state) behaviour of the structure. Specifically, the comparison between experimental data and numerical results show a good agreement for the global parameter torsional stiffness. Local strain values are also well reproduced in high-stressed zone. Thus, the model can be used as a reliable “virtual tool” for designers to evaluate the suitability of layout modifications, thereby replacing and reducing the amount of commonly needed experimental tests and, consequently, reducing time and costs. Finally, an example of the potentiality of the finite element model adopted for a computer-aided engineering approach is shown to determine the most promising solution for increasing the torsional stiffness of the trough, while simultaneously limiting the required experimental tests.

Suggested Citation

  • Andrea Gilioli & Francesco Cadini & Luca Abbiati & Giulio Angelo Guido Solero & Massimo Fossati & Andrea Manes & Lino Carnelli & Carla Lazzari & Stefano Cardamone & Marco Giglio, 2021. "Finite Element Modelling of a Parabolic Trough Collector for Concentrated Solar Power," Energies, MDPI, vol. 14(1), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:209-:d:474082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    2. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    3. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    4. Andrea Gilioli & Luca Abbiati & Massimo Fossati & Francesco Cadini & Andrea Manes & Marco Giglio & Lino Carnelli & Claudio Boris Volpato & Stefano Cardamone, 2019. "Experimental Investigation on the Mechanical Behavior of an Innovative Parabolic Trough Collector," Energies, MDPI, vol. 12(23), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumol Sae-Heng Pisitsungkakarn & Pichitpon Neamyou, 2022. "Efficiency of Semi-Automatic Control Ethanol Distillation Using a Vacuum-Tube Parabolic Solar Collector," Energies, MDPI, vol. 15(13), pages 1-18, June.
    2. Dusan Maga & Jaromir Hrad & Jiri Hajek & Akeel Othman, 2021. "Application of Minimum Energy Effect to Numerical Reconstruction of Insolation Curves," Energies, MDPI, vol. 14(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
    2. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2019. "Performance analysis of Parabolic Trough Collectors with Double Glass Envelope," Renewable Energy, Elsevier, vol. 130(C), pages 1092-1107.
    3. Andrea Gilioli & Luca Abbiati & Massimo Fossati & Francesco Cadini & Andrea Manes & Marco Giglio & Lino Carnelli & Claudio Boris Volpato & Stefano Cardamone, 2019. "Experimental Investigation on the Mechanical Behavior of an Innovative Parabolic Trough Collector," Energies, MDPI, vol. 12(23), pages 1-19, November.
    4. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    5. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Majedul Islam & Prasad Yarlagadda & Azharul Karim, 2018. "Effect of the Orientation Schemes of the Energy Collection Element on the Optical Performance of a Parabolic Trough Concentrating Collector," Energies, MDPI, vol. 12(1), pages 1-20, December.
    7. Praveen R. P. & Mohammad Abdul Baseer & Ahmed Bilal Awan & Muhammad Zubair, 2018. "Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region," Energies, MDPI, vol. 11(4), pages 1-18, March.
    8. Xu, Li & Sun, Feihu & Ma, Linrui & Li, Xiaolei & Yuan, Guofeng & Lei, Dongqiang & Zhu, Huibin & Zhang, Qiangqiang & Xu, Ershu & Wang, Zhifeng, 2018. "Analysis of the influence of heat loss factors on the overall performance of utility-scale parabolic trough solar collectors," Energy, Elsevier, vol. 162(C), pages 1077-1091.
    9. Kurşun, Burak, 2019. "Thermal performance assessment of internal longitudinal fins with sinusoidal lateral surfaces in parabolic trough receiver tubes," Renewable Energy, Elsevier, vol. 140(C), pages 816-827.
    10. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    11. Fuqiang, Wang & Zhexiang, Tang & Xiangtao, Gong & Jianyu, Tan & Huaizhi, Han & Bingxi, Li, 2016. "Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube," Energy, Elsevier, vol. 114(C), pages 275-292.
    12. Bretado de los Rios, Mariana Soledad & Rivera-Solorio, Carlos I. & García-Cuéllar, Alejandro J., 2018. "Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 665-673.
    13. Qu, Wanjun & Wang, Ruilin & Hong, Hui & Sun, Jie & Jin, Hongguang, 2017. "Test of a solar parabolic trough collector with rotatable axis tracking," Applied Energy, Elsevier, vol. 207(C), pages 7-17.
    14. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    15. Liu, Shuaishuai & Yang, Bin & Hou, Yutian & Yu, Xiaohui, 2022. "Effects of geometric configurations on the thermal-mechanical properties of parabolic trough receivers based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 199(C), pages 929-942.
    16. Gharat, Punit V. & Bhalekar, Snehal S. & Dalvi, Vishwanath H. & Panse, Sudhir V. & Deshmukh, Suresh P. & Joshi, Jyeshtharaj B., 2021. "Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Forman, Patrick & Penkert, Sebastian & Kämper, Christoph & Stallmann, Tobias & Mark, Peter & Schnell, Jürgen, 2020. "A survey of solar concrete shell collectors for parabolic troughs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Yang, Bin & Liu, Shuaishuai & Zhang, Ruirui & Yu, Xiaohui, 2022. "Influence of reflector installation errors on optical-thermal performance of parabolic trough collectors based on a MCRT - FVM coupled model," Renewable Energy, Elsevier, vol. 185(C), pages 1006-1017.
    19. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    20. Winkelmann, Ulf & Kämper, Christoph & Höffer, Rüdiger & Forman, Patrick & Ahrens, Mark Alexander & Mark, Peter, 2020. "Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2390-2407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:209-:d:474082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.