IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6359-d650107.html
   My bibliography  Save this article

Drone-Assisted Image Processing Scheme using Frame-Based Location Identification for Crack and Energy Loss Detection in Building Envelopes

Author

Listed:
  • Sukjoon Oh

    (Indoor Air Quality Research Center, Korea Institute of Civil Engineering and Building Technology, Goyang-Si 10223, Korea)

  • Suyeon Ham

    (Department of Aerospace and Software Engineering, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Korea)

  • Seongjin Lee

    (Department of AI Convergence Engineering, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Korea)

Abstract

This paper presents improved methods to detect cracks and thermal leakage in building envelopes using unmanned aerial vehicles (UAV) (i.e., drones) with video camcorders and/or infrared cameras. Three widely used contour detectors of Sobel, Laplacian, and Canny algorithms were compared to find a better solution with low computational overhead. Furthermore, a scheme using frame-based location identification was developed to effectively utilize the existing approach by finding the current location of the drone-assisted image frame. The results showed a simplified drone-assisted scheme along with automation, higher accuracy, and better speed while using lower battery energy. Furthermore, this paper found that the cost-effective drone with the attached equipment generated accurate results without using an expensive drone. The new scheme of this paper will contribute to automated anomaly detection, energy auditing, and commissioning for sustainably built environments.

Suggested Citation

  • Sukjoon Oh & Suyeon Ham & Seongjin Lee, 2021. "Drone-Assisted Image Processing Scheme using Frame-Based Location Identification for Crack and Energy Loss Detection in Building Envelopes," Energies, MDPI, vol. 14(19), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6359-:d:650107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fox, Matthew & Coley, David & Goodhew, Steve & de Wilde, Pieter, 2014. "Thermography methodologies for detecting energy related building defects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 296-310.
    2. Lucchi, Elena, 2018. "Applications of the infrared thermography in the energy audit of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3077-3090.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    4. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    5. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    6. Younness EL Fouih & Amine Allouhi & Jamil Abdelmajid & Tarik Kousksou & Youssef Mourad, 2020. "Post Energy Audit of Two Mosques as a Case Study of Intermittent Occupancy Buildings: Toward more Sustainable Mosques," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    7. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Perez, Oscar, 2018. "Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 566-579.
    8. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    9. Baldinelli, Giorgio & Bianchi, Francesco & Rotili, Antonella & Costarelli, Danilo & Seracini, Marco & Vinti, Gianluca & Asdrubali, Francesco & Evangelisti, Luca, 2018. "A model for the improvement of thermal bridges quantitative assessment by infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 854-864.
    10. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2020. "Analytical Methods to Estimate the Thermal Transmittance of LSF Walls: Calculation Procedures Review and Accuracy Comparison," Energies, MDPI, vol. 13(4), pages 1-27, February.
    11. Javad Zare Derakhshan & Saeed Firouzi & Armaghan Kosari-Moghaddam, 2022. "Energy audit of tobacco production agro-system based on different farm size levels in northern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2715-2735, February.
    12. Aïssani, A. & Chateauneuf, A. & Fontaine, J.-P. & Audebert, Ph., 2016. "Quantification of workmanship insulation defects and their impact on the thermal performance of building facades," Applied Energy, Elsevier, vol. 165(C), pages 272-284.
    13. Manuel J. Carretero-Ayuso & Carlos E. Rodríguez-Jiménez & David Bienvenido-Huertas & Juan Moyano, 2020. "Cataloguing of the Defects Existing in Aluminium Window Frames and Their Recurrence According to Pluvio-Climatic Zones," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    14. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Takahiro Kimura & Tao Zhang & Hiroatsu Fukuda, 2019. "A Proposal for the Development of a Building Management System for Extending the Lifespan of Housing Complexes in Japan," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    16. Shabunko, Veronika & Badrinarayanan, Samyuktha & Pillai, Dhanup S., 2021. "Evaluation of in-situ thermal transmittance of innovative building integrated photovoltaic modules: Application to thermal performance assessment for green mark certification in the tropics," Energy, Elsevier, vol. 235(C).
    17. Yu, Xinran & Zou, Zhengbo & Ergan, Semiha, 2023. "Extracting principal building variables from automatically collected urban scale façade images for energy conservation through deep transfer learning," Applied Energy, Elsevier, vol. 344(C).
    18. Mirco Andreotti & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Roberto Malaguti, 2020. "Design and Construction of a New Metering Hot Box for the In Situ Hygrothermal Measurement in Dynamic Conditions of Historic Masonries," Energies, MDPI, vol. 13(11), pages 1-21, June.
    19. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    20. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6359-:d:650107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.