IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6147-d644066.html
   My bibliography  Save this article

Studies on Frequency Response Characteristics of High-Speed Railway Train End Relationship Test System with Flexible Bases

Author

Listed:
  • Zhiqiang Zhang

    (State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street No. 92, Harbin 150000, China)

  • Dacheng Cong

    (State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street No. 92, Harbin 150000, China)

  • Zhidong Yang

    (State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street No. 92, Harbin 150000, China)

  • Yunfei Cai

    (State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street No. 92, Harbin 150000, China)

  • Junwei Han

    (State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street No. 92, Harbin 150000, China)

Abstract

A train end relationship test system was installed with a Stewart parallel robot on the reaction bases perpendicular to the ground, to test the fatigue and durability of train end relationship components, such as the transfixion way of a high-speed railway train. The flexibility of the reaction bases affected the test accuracy of the train end relationship components within a test frequency band range. In this paper, a coupling characteristic model was established between the flexible bases and the parallel robot. Then, the analytical relationship was analyzed between the natural frequency of the bases and the natural frequency of the parallel robot. Moreover, a design criterion was proposed for the natural frequency of the reaction bases. It was considered that when the natural frequency of the bases was not less than five times the natural frequency of the parallel robot, the influence of the flexibility of the bases on the test accuracy can be ignored. The validity of the design criterion was verified by the simulation results.

Suggested Citation

  • Zhiqiang Zhang & Dacheng Cong & Zhidong Yang & Yunfei Cai & Junwei Han, 2021. "Studies on Frequency Response Characteristics of High-Speed Railway Train End Relationship Test System with Flexible Bases," Energies, MDPI, vol. 14(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6147-:d:644066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chenyang Zhang & Hongzhou Jiang, 2021. "Rigid-Flexible Modal Analysis of the Hydraulic 6-DOF Parallel Mechanism," Energies, MDPI, vol. 14(6), pages 1-11, March.
    2. Moshe Givoni, 2006. "Development and Impact of the Modern High‐speed Train: A Review," Transport Reviews, Taylor & Francis Journals, vol. 26(5), pages 593-611, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianjiao Zhao & Xiang Xiao & Qinghui Dai, 2021. "Transportation Infrastructure Construction and High-Quality Development of Enterprises: Evidence from the Quasi-Natural Experiment of High-Speed Railway Opening in China," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    2. Meng, Xuechen & Lin, Shanlang & Zhu, Xiaochuan, 2018. "The resource redistribution effect of high-speed rail stations on the economic growth of neighbouring regions: Evidence from China," Transport Policy, Elsevier, vol. 68(C), pages 178-191.
    3. Daniel Albalate & Germá Bel, 2015. "La experiencia internacional en alta velocidad ferroviaria," Working Papers 2015-02, FEDEA.
    4. Román, Concepción & Martín, Juan Carlos, 2014. "Integration of HSR and air transport: Understanding passengers’ preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 129-141.
    5. Long, Fenjie & Zheng, Longfei & Song, Zhida, 2018. "High-speed rail and urban expansion: An empirical study using a time series of nighttime light satellite data in China," Journal of Transport Geography, Elsevier, vol. 72(C), pages 106-118.
    6. Diao, Mi, 2018. "Does growth follow the rail? The potential impact of high-speed rail on the economic geography of China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 279-290.
    7. Xia, Wenyi & Zhang, Anming, 2016. "High-speed rail and air transport competition and cooperation: A vertical differentiation approach," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 456-481.
    8. José Manuel Naranjo Gómez, 2016. "Impacts on the Social Cohesion of Mainland Spain’s Future Motorway and High-Speed Rail Networks," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    9. Pařil Vilém & Viturka Milan & Rederer Václav, 2023. "The change of commuting behaviour with planned high-speed railways in Czechia," Review of Economic Perspectives, Sciendo, vol. 23(1), pages 1-13, March.
    10. Chen, Xiaoyan & Liu, Yisheng, 2020. "Visualization analysis of high-speed railway research based on CiteSpace," Transport Policy, Elsevier, vol. 85(C), pages 1-17.
    11. Di Wu & Juan Carlos Martín, 2022. "Research on Passengers’ Preference for High-Speed Railways (HSRs) and High-Speed Trains (HSTs)," Sustainability, MDPI, vol. 14(3), pages 1-20, January.
    12. Hongchang Li & Jack Strauss & Lihong Liu, 2019. "A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint," Sustainability, MDPI, vol. 11(7), pages 1-24, April.
    13. Shao, Shuai & Tian, Zhihua & Yang, Lili, 2017. "High speed rail and urban service industry agglomeration: Evidence from China's Yangtze River Delta region," Journal of Transport Geography, Elsevier, vol. 64(C), pages 174-183.
    14. Jin, Mengjie & Lin, Kun-Chin & Shi, Wenming & Lee, Paul T.W. & Li, Kevin X., 2020. "Impacts of high-speed railways on economic growth and disparity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 158-171.
    15. Levinson, David M., 2012. "Accessibility impacts of high-speed rail," Journal of Transport Geography, Elsevier, vol. 22(C), pages 288-291.
    16. Haoran Zhang & Ying Chai & Xuyu Yang & Wenli Zhao, 2022. "High-Speed Rail and Urban Growth Disparity: Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-13, July.
    17. Zhao, Yun & Yu, Hongbo, 2018. "A door-to-door travel time approach for evaluating modal competition of intercity travel: A focus on the proposed Dallas-Houston HSR route," Journal of Transport Geography, Elsevier, vol. 72(C), pages 13-22.
    18. Carlos Romero & Clara Zamorano & Emilio Ortega & Belén Martín, 2021. "Access to Secondary HSR Stations in the Urban Periphery: A Generalised Cost-Based Assessment," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    19. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    20. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6147-:d:644066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.