IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6112-d643038.html
   My bibliography  Save this article

Vortex Patterns Investigation and Enstrophy Analysis in a Small Scale S-CO 2 Axial Turbine

Author

Listed:
  • Qiyu Ying

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Weilin Zhuge

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Yangjun Zhang

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Can Ma

    (Science and Technology on Thermal Energy and Power Laboratory, Wuhan 430205, China)

  • Jinlan Gou

    (Science and Technology on Thermal Energy and Power Laboratory, Wuhan 430205, China)

  • Wei Wang

    (Science and Technology on Thermal Energy and Power Laboratory, Wuhan 430205, China)

Abstract

Supercritical carbon dioxide (S-CO 2 ) Brayton cycle system is a promising closed-loop energy conversion system frequently mentioned in the automotive and power generation field in recent years. To develop a suitable design methodology for S-CO 2 turbines with better performance, an understanding of the vortex flow patterns and associated aerodynamic loss inside a S-CO 2 turbine is essential. In this paper, a hundred-kilowatt level S-CO 2 axial turbine is designed and investigated using a three-dimensional transient viscous flow simulation. The NIST Span and Wagner equation of state model that considers the real gas effects is utilized to estimate the thermodynamic properties of the supercritical fluid. The numerical methods are experimentally validated. The results indicates that the aspect ratio and tip-to-hub ratio are different in the S-CO 2 turbine from that in the gas turbine, and the vortex flow patterns are influenced notably by these geometrical parameters. Both the vortex structure and moving tracks of passage vortices are changed as a result of large centrifugal force. An interaction between tip leakage vortex and hub passage vortex is observed in the impeller passage and its formation and development mechanism are revealed. To further explore the aerodynamic loss mechanism caused by vortex interaction, the energy loss in the impeller passage is analyzed with the enstrophy dissipation method, which can not only accurately calculate the energy loss but also estimate how the vortical motions occur. It is found that the enstrophy and energy loss can be effectively reduced by vortex interaction between tip leakage vortex and hub passage vortex. The results in this study would increase the knowledge of vortex flow patterns in S-CO 2 turbine and the proposed enstrophy production method can be used intuitively to provide a reference for flow vortical motion study in turbines.

Suggested Citation

  • Qiyu Ying & Weilin Zhuge & Yangjun Zhang & Can Ma & Jinlan Gou & Wei Wang, 2021. "Vortex Patterns Investigation and Enstrophy Analysis in a Small Scale S-CO 2 Axial Turbine," Energies, MDPI, vol. 14(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6112-:d:643038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Guangdai & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Zhuge, Weilin & Zhang, Jing & Atik, Mohammad Atikur Rahman, 2020. "Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery," Applied Energy, Elsevier, vol. 257(C).
    2. Jinping Wang & Jun Wang & Peter D. Lund & Hongxia Zhu, 2019. "Thermal Performance Analysis of a Direct-Heated Recompression Supercritical Carbon Dioxide Brayton Cycle Using Solar Concentrators," Energies, MDPI, vol. 12(22), pages 1-17, November.
    3. Antti Uusitalo & Aki Grönman, 2021. "Analysis of Radial Inflow Turbine Losses Operating with Supercritical Carbon Dioxide," Energies, MDPI, vol. 14(12), pages 1-18, June.
    4. Huang, Guangdai & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Zhuge, Weilin & Tao, Lin, 2019. "Experiments on a small-scale axial turbine expander used in CO2 transcritical power cycle," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Lingfeng & Tian, Hua & Shu, Gequn, 2020. "Multi-mode analysis of a CO2-based combined refrigeration and power cycle for engine waste heat recovery," Applied Energy, Elsevier, vol. 264(C).
    2. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    3. Du, Yuheng & Pekris, Michael & Tian, Guohong, 2023. "Influence of sealing cavity geometries on flank clearance leakage and pressure imbalance of micro-scale transcritical CO2 scroll expander by CFD modelling," Energy, Elsevier, vol. 282(C).
    4. Liaw, Kim Leong & Ong, Khai Chuin & Mohd Ali Zar, Muhammad Aliff B. & Lai, Wen Kang & Muhammad, M. Fadhli B. & Firmansyah, & Kurnia, Jundika C., 2023. "Experimental and numerical investigation of an innovative non-combustion impulse gas turbine for micro-scale electricity generation," Energy, Elsevier, vol. 266(C).
    5. Yang, Liu & Su, Zixiang, 2022. "An eco-friendly and efficient trigeneration system for dual-fuel marine engine considering heat storage and energy deployment," Energy, Elsevier, vol. 239(PA).
    6. Pan, Lisheng & Shi, Weixiu & Wei, Xiaolin & Li, Teng & Li, Bo, 2020. "Experimental verification of the self-condensing CO2 transcritical power cycle," Energy, Elsevier, vol. 198(C).
    7. Moradi, Ramin & Cioccolanti, Luca & Del Zotto, Luca & Renzi, Massimiliano, 2023. "Comparative sensitivity analysis of micro-scale gas turbine and supercritical CO2 systems with bottoming organic Rankine cycles fed by the biomass gasification for decentralized trigeneration," Energy, Elsevier, vol. 266(C).
    8. Yang, Chengdian & Yi, Fulong & Zhang, Jianyuan & Du, Genwang & Yin, Wei & Ma, Yuhua & Wang, Wei & You, Jinggang & Yu, Songtao, 2023. "Towards high-performance of organic flash cycle through cycle configuration improvement: State-of-art research," Energy, Elsevier, vol. 278(PA).
    9. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    10. Wang, Wei & Qiao, Han & Lei, Biao & Wu, Yu-ting & Ma, Chong-fang, 2021. "Experimental study on the influence of inlet and exhaust pressure loss on the performance of single screw expanders," Energy, Elsevier, vol. 232(C).
    11. He, Jintao & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Zhang, Meiyan & Yao, Yu & Cai, Jinwen & Shu, Gequn, 2022. "Control strategy for a CO2-based combined cooling and power generation system based on heat source and cold sink fluctuations," Energy, Elsevier, vol. 257(C).
    12. Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
    13. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    15. Muhammed Saeed & Khaled Alawadi & Sung Chul Kim, 2020. "Performance of Supercritical CO 2 Power Cycle and Its Turbomachinery with the Printed Circuit Heat Exchanger with Straight and Zigzag Channels," Energies, MDPI, vol. 14(1), pages 1-25, December.
    16. He, Jintao & Zhang, Yonghao & Tian, Hua & Wang, Xuan & Li, Ligeng & Cai, Jinwen & Shi, Lingfeng & Shu, Gequn, 2022. "Dynamic performance of a multi-mode operation CO2-based system combining cooling and power generation," Applied Energy, Elsevier, vol. 312(C).
    17. Wang, Wei & Huo, Jia-hui & Tao, Yue-ting & Lei, Biao & Wu, Yu-ting & Ma, Chong-fang, 2023. "Semi-empirical modelling and analysis of single screw expanders considering inlet and exhaust pressure losses," Energy, Elsevier, vol. 266(C).
    18. Hanwei Wang & Yue Chao & Tian Tang & Kai Luo & Kan Qin, 2021. "A Comparison of Partial Admission Axial and Radial Inflow Turbines for Underwater Vehicles," Energies, MDPI, vol. 14(5), pages 1-20, March.
    19. Zhang, Yonghao & Shi, Lingfeng & Tian, Hua & Li, Ligeng & Wang, Xuan & Sun, Xiaocun & Shu, Gequn, 2022. "Experiment on CO2–based combined cooling and power cycle: A multi-mode operating investigation," Applied Energy, Elsevier, vol. 313(C).
    20. Chenqi Tang & Lingen Chen & Huijun Feng & Wenhua Wang & Yanlin Ge, 2020. "Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs," Energies, MDPI, vol. 13(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6112-:d:643038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.