IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p62-d467904.html
   My bibliography  Save this article

Performance of Supercritical CO 2 Power Cycle and Its Turbomachinery with the Printed Circuit Heat Exchanger with Straight and Zigzag Channels

Author

Listed:
  • Muhammed Saeed

    (Mechanical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, UAE)

  • Khaled Alawadi

    (Department of Automotive and Marine Technology, The Public Authority of Applied Education and Trainings, Shuwaikh, Kuwait City 70654, Kuwait)

  • Sung Chul Kim

    (School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si 38541, Korea)

Abstract

Since printed circuit heat exchangers (PCHE) are the largest modules of a supercritical carbon dioxide Brayton cycle, they can considerably affect the whole system’s performance and layout. Straight-channel and zigzag-channel printed circuit heat exchangers have frequently been analyzed in the standalone mode and repeatedly proposed for s C O 2 − B C . However, the impact of heat exchanger designs with straight and zigzag-channel configurations on the performance of the cycle and its components, i.e., the turbine and compressor, has not been studied. In this context, this study evaluates the effect of different heat exchanger designs with various values of effectiveness ( ϵ ), inlet Reynolds number (Re), and channel configuration (zigzag and straight channel) on the overall performance of the s C O 2 − B C and its components. For the design and analysis of PCHEs, an in-house PCHE design and analysis code (PCHE-DAC) was developed in the MATLAB environment. The s C O 2 − B C performance was evaluated utilizing an in-house cycle simulation and analysis code (CSAC) that employs the heat exchanger design code as a subroutine. The results suggest that pressure drop in PCHEs with straight-channel configuration is up to 3.0 times larger than in PCHEs with zigzag-channel configuration. It was found that a higher pressure drop in the PCHEs with straight channels can be attributed to substantially longer channel lengths required for these designs (up to 4.1 times than zigzag-channels) based on the poor heat transfer characteristics associated with these channel geometries. Thus, cycle layouts using PCHEs with a straight-channel configuration impart a much higher load (up to 1.13 times) on the recompression compressor, this in turn, results in a lower pressure ratio across the turbine. Therefore, the overall performance of the s C O 2 − B C using PCHEs with straight-channel configurations is found to be substantially inferior to that of layouts using PCHEs with zigzag-channel configurations. Finally, optimization results suggest that heat exchanger’s design with inlet Reynolds number and heat exchanger effectiveness ranging from 32 k to 42 k and 0.94 > ϵ > 0.87 , respectively, are optimal for s C O 2 − B C and present a good bargain between cycle efficiency and its layout size.

Suggested Citation

  • Muhammed Saeed & Khaled Alawadi & Sung Chul Kim, 2020. "Performance of Supercritical CO 2 Power Cycle and Its Turbomachinery with the Printed Circuit Heat Exchanger with Straight and Zigzag Channels," Energies, MDPI, vol. 14(1), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:62-:d:467904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/62/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/62/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muñoz, Marta & Rovira, Antonio & Sánchez, Consuelo & Montes, María José, 2017. "Off-design analysis of a Hybrid Rankine-Brayton cycle used as the power block of a solar thermal power plant," Energy, Elsevier, vol. 134(C), pages 369-381.
    2. Pham, H.S. & Alpy, N. & Ferrasse, J.H. & Boutin, O. & Quenaut, J. & Tothill, M. & Haubensack, D. & Saez, M., 2015. "Mapping of the thermodynamic performance of the supercritical CO2 cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor," Energy, Elsevier, vol. 87(C), pages 412-424.
    3. Reyes-Belmonte, M.A. & Sebastián, A. & Romero, M. & González-Aguilar, J., 2016. "Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant," Energy, Elsevier, vol. 112(C), pages 17-27.
    4. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    5. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    6. Jinping Wang & Jun Wang & Peter D. Lund & Hongxia Zhu, 2019. "Thermal Performance Analysis of a Direct-Heated Recompression Supercritical Carbon Dioxide Brayton Cycle Using Solar Concentrators," Energies, MDPI, vol. 12(22), pages 1-17, November.
    7. Saeed, Muhammad & Kim, Man-Hoe, 2018. "Analysis of a recompression supercritical carbon dioxide power cycle with an integrated turbine design/optimization algorithm," Energy, Elsevier, vol. 165(PA), pages 93-111.
    8. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems," Energy, Elsevier, vol. 124(C), pages 752-771.
    9. Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
    10. Song, Jian & Li, Xue-song & Ren, Xiao-dong & Gu, Chun-wei, 2018. "Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 143(C), pages 406-416.
    11. Sarkar, Jahar, 2009. "Second law analysis of supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 34(9), pages 1172-1178.
    12. Kim, Young Min & Sohn, Jeong Lak & Yoon, Eui Soo, 2017. "Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine," Energy, Elsevier, vol. 118(C), pages 893-905.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeed, Muhammad & Kim, Man-Hoe, 2022. "A newly proposed supercritical carbon dioxide Brayton cycle configuration to enhance energy sources integration capability," Energy, Elsevier, vol. 239(PA).
    2. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    3. Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
    4. Ma, Yuegeng & Zhang, Xuwei & Liu, Ming & Yan, Junjie & Liu, Jiping, 2018. "Proposal and assessment of a novel supercritical CO2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications," Energy, Elsevier, vol. 148(C), pages 839-854.
    5. Ma, Yuegeng & Morozyuk, Tatiana & Liu, Ming & Yan, Junjie & Liu, Jiping, 2019. "Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach," Applied Energy, Elsevier, vol. 242(C), pages 1134-1154.
    6. Park, Joo Hyun & Park, Hyun Sun & Kwon, Jin Gyu & Kim, Tae Ho & Kim, Moo Hwan, 2018. "Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors," Energy, Elsevier, vol. 160(C), pages 520-535.
    7. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    8. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    9. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
    11. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
    12. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
    13. Palacz, Michal & Haida, Michal & Smolka, Jacek & Plis, Marcin & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "A gas ejector for CO2 supercritical cycles," Energy, Elsevier, vol. 163(C), pages 1207-1216.
    14. Liu, Zhiyuan & Wang, Peng & Sun, Xiangyu & Zhao, Ben, 2022. "Analysis on thermodynamic and economic performances of supercritical carbon dioxide Brayton cycle with the dynamic component models and constraint conditions," Energy, Elsevier, vol. 240(C).
    15. Li, Xia & Chen, Qun & Chen, Xi & He, Ke-Lun & Hao, Jun-Hong, 2020. "Graph theory-based heat current analysis method for supercritical CO2 power generation system," Energy, Elsevier, vol. 194(C).
    16. Tang, Junrong & Li, Qibin & Wang, Shukun & Yu, Haoshui, 2023. "Thermo-economic optimization and comparative analysis of different organic flash cycles for the supercritical CO2 recompression Brayton cycle waste heat recovery," Energy, Elsevier, vol. 278(PB).
    17. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    18. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
    20. Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:62-:d:467904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.